
9/3/19

1

CompSci 516
Database Systems

Lecture 2
SQL

Instructor: Sudeepa Roy

1Duke CS, Fall 2018

Announcements
• If you are enrolled to the class, but have not

received the email from Piazza, please send me an
email

• HW1 will be released this week

• Project ideas will be posted by next week

Duke CS, Fall 2018 2

Today’s topic
• Physical and Logical Data Independence
• Data Model and XML
• More SQL

– Aggregates (Group-by)!
– Creating/modifying relations/data
– Constraints

Duke CS, Fall 2018 3

Acknowledgement:
The following slides have been created adapting the
instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and Dr. Gehrke.

Physical and Logical Data
Independence

Duke CS, Fall 2018 4

What does a DBMS provide?

Duke CS, Fall 2018 5

Why use a DBMS?

6Duke CS, Fall 2019 CompSci 516: Database Systems

9/3/19

2

Why use a DBMS?

7Duke CS, Fall 2019 CompSci 516: Database Systems

Why use a DBMS?

8Duke CS, Fall 2019 CompSci 516: Database Systems

When NOT to use a DBMS?

9Duke CS, Fall 2019 CompSci 516: Database Systems

Levels of Abstractions in a DBMS

• Physical schema
– Storage as files, row vs.

column store, indexes

– will discuss these in
later lectures

Duke CS, Fall 2019 CompSci 516: Database Systems 10

Disk

Physical Schema

Logical Schema

External Schema External Schema External Schema

Levels of Abstractions in a DBMS

• Logical/Conceptual schema
– describes the stored data in the

physical schema

• Decided by conceptual schema
design

– e.g. ER Diagram
• not covered in this course

– Normalization
• will be covered

Students(sid: string, name: string, login:
string, age: integer, gpa: real)

Duke CS, Fall 2019 CompSci 516: Database Systems 11

Disk

Physical Schema

Logical Schema

External Schema External Schema External Schema

Levels of Abstractions in a DBMS

• External schema
– different “views” of the

database to different
users (later)

• One physical and logical
schema but there can
be multiple external
schemas

Duke CS, Fall 2019 CompSci 516: Database Systems 12

Disk

Physical Schema

Logical Schema

External Schema External Schema External Schema

9/3/19

3

Data Independence

• Application programs are insulated from
changes in the way the data is structured and
stored

• A very important property of a DBMS

• Logical and Physical

Duke CS, Fall 2019 CompSci 516: Database Systems 13

Logical Data Independence

• Users can be shielded from changes in the logical
structure of data

• e.g. Students:
Students(sid: string, name: string, login: string, age: integer, gpa: real)

• Divide into two relations
Students_public(sid: string, name: string, login: string)
Students_private(sid: string, age: integer, gpa: real)

• Still a “view” Students can be obtained using the above
new relations
– by “joining” them with sid

• A user who queries this view Students will get the same
answer as before

Duke CS, Fall 2019 CompSci 516: Database Systems 14

Physical Data Independence

• The logical/conceptual schema insulates users
from changes in physical storage details
– how the data is stored on disk
– the file structure
– the choice of indexes

• The application remains unaltered
– But the performance may be affected by such

changes

Duke CS, Fall 2019 CompSci 516: Database Systems 15

Data Model and XML
(an overview)

Duke CS, Fall 2018 16

Data Model

• Applications need to model some real world units
• Entities:

– Students, Departments, Courses, Faculty, Organization,
Employee, …

• Relationships:
– Course enrollments by students, Product sales by an

organization

• A data model is a collection of high-level data
description constructs that hide many low-level
storage details

17Duke CS, Fall 2019 CompSci 516: Database Systems

Data Model

Can Specify:

1. Structure of the data
– like arrays or structs in a programming language
– but at a higher level (conceptual model)

2. Operations on the data
– unlike a programming language, not any operation can be performed
– allow limited sets of queries and modifications
– a strength, not a weakness!

3. Constraints on the data
– what the data can be
– e.g. a movie has exactly one title

18Duke CS, Fall 2019 CompSci 516: Database Systems

9/3/19

4

Important Data Models

• Structured Data
• Semi-structured Data
• Unstructured Data

What are these?

19Duke CS, Fall 2019 CompSci 516: Database Systems

Important Data Models

20Duke CS, Fall 2019 CompSci 516: Database Systems

Semi-structured Data and XML

• XML: Extensible Markup Language

• Will not be covered in detail in class, but many datasets
available to download are in this form
– You will download the DBLP dataset in XML format and

transform into relational form (in HW1!)

• Data does not have a fixed schema
– “Attributes” are part of the data
– The data is “self-describing”
– Tree-structured

Duke CS, Fall 2018 21

XML: Example
<article mdate="2011-01-11” key="journals/acta/Saxena96">

<author>Sanjeev Saxena</author>
<title>Parallel Integer Sorting and Simulation Amongst CRCW

Models.</title>
<pages>607-619</pages>
<year>1996</year>
<volume>33</volume>
<journal>Acta Inf.</journal>
<number>7</number>
<url>db/journals/acta/acta33.html#Saxena96</url>
<ee>http://dx.doi.org/10.1007/BF03036466</ee>

</article>

Duke CS, Fall 2018 22

Attributes

Elements

Attribute vs. Elements

• Elements can be repeated and nested
• Attributes are unique and atomic

Duke CS, Fall 2018 23

XML vs. Relational Databases

+ Serves as a model suitable for integration of databases containing similar
data with different schemas

– e.g. try to integrate two student databases: S1(sid, name, gpa) and S2(sid, dept,
year)

– Many “nulls” if done in relational model, very easy in XML

• NULL = A keyword to denote missing or unknown values

+ Flexible – easy to change the schema and data

- Makes query processing more difficult

Which one is easier?
• XML (semi-structured) to relational (structured)
or
• relational (structured) to XML (semi-structured)?

Duke CS, Fall 2018 24

9/3/19

5

XML to Relational Model

• Problem 1: Repeated attributes
<book>

<author>Ramakrishnan</author>
<author>Gehrke</author>
<title>Database Management Systems</title>
<publisher> McGraw Hill

</book>

What is a good relational schema?

Duke CS, Fall 2018 25

XML to Relational Model

• Problem 1: Repeated attributes
<book>

<author>Ramakrishnan</author>
<author>Gehrke</author>
<title>Database Management Systems</title>
<pubisher> McGraw Hill</publisher>

</book>

Duke CS, Fall 2018 26

Title Publisher Author1 Author2

What if the paper
has a single author?

XML to Relational Model

• Problem 1: Repeated attributes
<book>

<author>Garcia-Molina</author>
<author>Ullman</author>
<author>Widom</author>
<title>Database Systems – The Complete Book</title>
<pubisher>Prentice Hall</publisher>

</book>

Duke CS, Fall 2018 27

Title Publisher Author1 Author2

Does not work

XML to Relational Model

Duke CS, Fall 2018 28

XML to Relational Model

Duke CS, Fall 2018 29

Summary: Data Models

• Relational data model is the most standard for
database managements
– and is the main focus of this course

• Semi-structured model/XML is also used in practice –
you will use them in hw assignments

• Unstructured data (text/photo/video) is unavoidable,
but won’t be covered in this class

Duke CS, Fall 2018 30

9/3/19

6

Back to SQL!

Duke CS, Fall 2018 31

Expressions and Strings

• Illustrates use of arithmetic expressions and string pattern matching
• Find triples (of ages of sailors and two fields defined by expressions)

for sailors
– whose names begin and end with B and contain at least three characters

• LIKE is used for string matching. `_’ stands for any one character
and `%’ stands for 0 or more arbitrary characters
– You will need these often

SELECT S.age, age1=S.age-5, 2*S.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘B_%B’

Duke CS, Fall 2019 32

Find sid’s of sailors who’ve reserved a red or a
green boat

• Assume a Boats relation

• UNION: Can be used to
compute the union of any
two union-compatible sets of
tuples
– can themselves be the result of

SQL queries

• If we replace OR by AND in the
first version, what do we get?

• Also available: EXCEPT (What
do we get if we replace UNION
by EXCEPT?)

Sailors (sid, sname, rating, age)
Reserves(sid, bid, day)
Boats(bid, bname, color)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Find sid’s of sailors who’ve reserved
a red and a green boat

Sailors (sid, sname, rating, age)
Reserves(sid, bid, day)
Boats(bid, bname, color)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Find sid’s of sailors who’ve reserved
a red and a green boat

• INTERSECT: Can be used to
compute the intersection of
any two union-compatible
sets of tuples.
– Included in the SQL/92

standard, but some systems
don’t support it

Sailors (sid, sname, rating, age)
Reserves(sid, bid, day)
Boats(bid, bname, color)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Nested Queries

• A very powerful feature of SQL:
– a WHERE/FROM/HAVING clause can itself contain an SQL query

• To find sailors who’ve not reserved #103, use NOT IN.
• To understand semantics of nested queries, think of a

nested loops evaluation
– For each Sailors tuple, check the qualification by computing the

subquery

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid=103)

Find names of sailors who’ve reserved boat #103:

Duke CS, Fall 2018 CompSci 516: Database Systems 36

Sailors (sid, sname, rating, age)
Reserves(sid, bid, day)
Boats(bid, bname, color)

9/3/19

7

Nested Queries with Correlation

• EXISTS is another set comparison operator, like IN
• Illustrates why, in general, subquery must be re-

computed for each Sailors tuple

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

Duke CS, Fall 2018 CompSci 516: Database Systems 37

Find names of sailors who’ve reserved boat #103:
Nested Queries with Correlation

• If UNIQUE is used, and * is replaced by R.bid, finds
sailors with at most one reservation for boat #103
– UNIQUE checks for duplicate tuples

SELECT S.sname
FROM Sailors S
WHERE UNIQUE (SELECT R.bid

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

Duke CS, Fall 2018 CompSci 516: Database Systems 38

Find names of sailors who’ve reserved boat #103
at most once:

More on Set-Comparison Operators

• We’ve already seen IN, EXISTS and UNIQUE

• Can also use NOT IN, NOT EXISTS and NOT UNIQUE.
• Also available: op ANY, op ALL, op IN

– where op : >, <, =, <=, >=
• Find sailors whose rating is greater than that of some

sailor called Horatio
– similarly ALL SELECT *

FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2
WHERE S2.sname=‘Horatio’)

Duke CS, Fall 2019 39

Recall: Aggregate Operators
COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT COUNT (*)
FROM Sailors S

SELECT AVG (DISTINCT S.age)
FROM Sailors S
WHERE S.rating=10

SELECT S.sname
FROM Sailors S
WHERE S.rating= (SELECT MAX(S2.rating)

FROM Sailors S2)

single column

SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname=‘Bob’

Check yourself:
What do these queries compute?

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Motivation for Grouping

• So far, we’ve applied aggregate operators to all
(qualifying) tuples
– Sometimes, we want to apply them to each of several groups

of tuples
• Consider: Find the age of the youngest sailor for each

rating level
– In general, we don’t know how many rating levels exist, and

what the rating values for these levels are!
– Suppose we know that rating values go from 1 to 10; we can

write 10 queries that look like this (need to replace i by num):
SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i

For i = 1, 2, ... , 10:

Duke CS, Fall 2018 CompSci 516: Database Systems 41

Queries With GROUP BY and HAVING

• The target-list contains
– (i) attribute names
– (ii) terms with aggregate operations (e.g., MIN (S.age))

• The attribute list (i) must be a subset of grouping-list
– Intuitively, each answer tuple corresponds to a group, and these attributes

must have a single value per group
– Here a group is a set of tuples that have the same value for all attributes in

grouping-list

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

Duke CS, Fall 2018 CompSci 516: Database Systems 42

First go over the examples in the following slides
Then come back to this slide and study yourself

9/3/19

8

Conceptual Evaluation
• The cross-product of relation-list is computed
• Tuples that fail qualification are discarded
• `Unnecessary’ fields are deleted
• The remaining tuples are partitioned into groups by the value of

attributes in grouping-list
• The group-qualification is then applied to eliminate some groups
• Expressions in group-qualification must have a single value per

group
– In effect, an attribute in group-qualification that is not an argument of an

aggregate op also appears in grouping-list
– like “…GROUP BY bid, sid HAVING bid = 3”

• One answer tuple is generated per qualifying group
Duke CS, Fall 2018 CompSci 516: Database Systems 43

First go over the examples in the following slides
Then come back to this slide and study yourself

SELECT S.rating, MIN (S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

sid sname rating age
22 dustin 7 45.0
29 brutus 1 33.0
31 lubber 8 55.5
32 andy 8 25.5
58 rusty 10 35.0
64 horatio 7 35.0
71 zorba 10 16.0
74 horatio 9 35.0
85 art 3 25.5
95 bob 3 63.5
96 frodo 3 25.5

Answer relation:

Sailors instance:

rating minage
3 25.5
7 35.0
8 25.5

Duke CS, Fall 2018 CompSci 516: Database Systems 44

Find age of the youngest sailor with age >= 18, for each rating with at
least 2 such sailors.

Find age of the youngest sailor with age >= 18, for each rating with at
least 2 such sailors.

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

Duke CS, Fall 2018 CompSci 516: Database Systems 45

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Step 1: Form the cross product: FROM clause
(some attributes are omitted for simplicity)

Find age of the youngest sailor with age >= 18, for each rating with at
least 2 such sailors.

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

Duke CS, Fall 2018 CompSci 516: Database Systems 46

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Step 2: Apply WHERE clause

Find age of the youngest sailor with age >= 18, for each rating with at
least 2 such sailors.

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

rating age
1 33.0
3 25.5
3 63.5
3 25.5
7 45.0
7 35.0
8 55.5
8 25.5
9 35.0
10 35.0

 Duke CS, Fall 2018 CompSci 516: Database Systems 47

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Step 3: Apply GROUP BY according to the listed attributes

Find age of the youngest sailor with age >= 18, for each rating with at
least 2 such sailors.

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

rating age
1 33.0
3 25.5
3 63.5
3 25.5
7 45.0
7 35.0
8 55.5
8 25.5
9 35.0
10 35.0

 Duke CS, Fall 2018 CompSci 516: Database Systems 48

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) >
1

Step 4: Apply HAVING clause
The group-qualification is applied to eliminate some groups

9/3/19

9

Find age of the youngest sailor with age >= 18, for each rating with at
least 2 such sailors.

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

rating minage
3 25.5
7 35.0
8 25.5

rating age
1 33.0
3 25.5
3 63.5
3 25.5
7 45.0
7 35.0
8 55.5
8 25.5
9 35.0
10 35.0

 Duke CS, Fall 2018 CompSci 516: Database Systems 49

rating age
7 45.0
1 33.0
8 55.5
8 25.5
10 35.0
7 35.0
10 16.0
9 35.0
3 25.5
3 63.5
3 25.5

SELECT S.rating, MIN
(S.age) AS minage
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

Step 5: Apply SELECT clause
Apply the aggregate operator
At the end, one tuple per group

Nulls and Views in SQL

Duke CS, Fall 2018 CompSci 516: Database Systems 50

Null Values
• Field values in a tuple are sometimes

– unknown, e.g., a rating has not been assigned, or
– inapplicable, e.g., no spouse’s name
– SQL provides a special value null for such situations.

Duke CS, Fall 2018 CompSci 516: Database Systems 51

Standard Boolean 2-valued logic

• True = 1, False = 0
• Suppose X = 5

– (X < 100) AND (X >= 1) is T ∧ T = T
– (X > 100) OR (X >= 1) is F ∨ T = T
– (X > 100) AND (X >= 1) is F ∧ T = F
– NOT(X = 5) is ¬T = F

• Intuitively,
– T = 1, F = 0
– For V1, V2 ∈ {1, 0}
– V1 ∧ V2 = MIN (V1, V2)
– V1 ∨ V2 = MAX(V1, V2)
– ¬(V1) = 1 – V1

Duke CS, Fall 2018 CompSci 516: Database Systems 52

2-valued logic does not work for nulls

• Suppose rating = null, X = 5
• Is rating>8 true or false?
• What about AND, OR and NOT connectives?

– (rating > 8) AND (X = 5)?

• What if we have such a condition in the
WHERE clause?

Duke CS, Fall 2018 CompSci 516: Database Systems 53

3-Valued Logic For Null

• TRUE (= 1), FALSE (= 0), UNKNOWN (= 0.5)
– unknown is treated as 0.5

• Now you can apply rules from 2-valued logic!
– For V1, V2 ∈ {1, 0, 0.5}
– V1 ∧ V2 = MIN (V1, V2)
– V1 ∨ V2 = MAX(V1, V2)
– ¬(V1) = 1 – V1

• Therefore,
– NOT UNKNOWN = UNKNOWN
– UNKNOWN OR TRUE = TRUE
– UNKNOWN AND TRUE = UNKNOWN
– UNKNOWN AND FALSE = FALSE
– UNKNOWN OR FALSE = UNKNOWN

Duke CS, Fall 2018 CompSci 516: Database Systems 54

9/3/19

10

New issues for Null
• The presence of null complicates many issues. E.g.:

– Special operators needed to check if value IS/IS NOT NULL
– Be careful!
– “WHERE X = NULL” does not work!
– Need to write “WHERE X IS NULL”

• Meaning of constructs must be defined carefully
– e.g., WHERE clause eliminates rows that don’t evaluate to true
– So not only FALSE, but UNKNOWNs are eliminated too
– very important to remember!

• But NULL allows new operators (e.g. outer joins)

• Arithmetic with NULL
– all of +, -, *, / return null if any argument is null

• Can force ”no nulls” while creating a table
– sname char(20) NOT NULL
– primary key is always not null
Duke CS, Fall 2018 CompSci 516: Database Systems 55

Aggregates with NULL

• What do you get for
• SELECT count(*) from R1?
• SELECT count(rating) from R1?

Duke CS, Fall 2018 CompSci 516: Database Systems 56

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35
R1

Aggregates with NULL

• What do you get for
• SELECT count(*) from R1?
• SELECT count(rating) from R1?
• Ans: 3 for both

Duke CS, Fall 2018 CompSci 516: Database Systems 57

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35
R1

Aggregates with NULL

• What do you get for
• SELECT count(*) from R1?
• SELECT count(rating) from R1?
• Ans: 3 for both

Duke CS, Fall 2018 CompSci 516: Database Systems 58

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35
R1

• What do you get for
• SELECT count(*) from R2?
• SELECT count(rating) from R2?

sid sname rating age

22 dustin 7 45

31 lubber null 55

58 rusty 10 35
R2

Aggregates with NULL

• What do you get for
• SELECT count(*) from R1?
• SELECT count(rating) from R1?
• Ans: 3 for both

Duke CS, Fall 2018 CompSci 516: Database Systems 59

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35
R1

• What do you get for
• SELECT count(*) from R2?
• SELECT count(rating) from R2?
• Ans: First 3, then 2

sid sname rating age

22 dustin 7 45

31 lubber null 55

58 rusty 10 35
R2

Aggregates with NULL

• COUNT, SUM, AVG, MIN, MAX (with or without DISTINCT)
– Discards null values first
– Then applies the aggregate
– Except count(*)

• If only applied to null values, the result is null

Duke CS, Fall 2018 CompSci 516: Database Systems 60

• SELECT sum(rating) from R2?
• Ans: 17

sid sname rating age

22 dustin 7 45

31 lubber null 55

58 rusty 10 35
R2

• SELECT sum(rating) from R3?
• Ans: null

sid sname rating age

22 dustin null 45

31 lubber null 55

58 rusty null 35
R3

9/3/19

11

Creating Relations in SQL
• Creates the “Students” relation

– the type (domain) of each field is
specified

– enforced by the DBMS whenever tuples
are added or modified

• As another example, the
“Enrolled” table holds information
about courses that students take

CREATE TABLE Students
(sid CHAR(20),
name CHAR(20),
login CHAR(10),
age INTEGER,
gpa REAL)

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2))

Duke CS, Fall 2018 61

sid cid grade
53831 Carnatic101 C
53831 Reggae203 B
53650 Topology112 A
53666 History105 B

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

Students
Enrolled

Destroying and Altering Relations

• Destroys the relation Students
– The schema information and the tuples are deleted.

DROP TABLE Students

• The schema of Students is altered by adding
a new field; every tuple in the current
instance is extended with a NULL value in
the new field.

ALTER TABLE Students
ADD COLUMN firstYear: integer

Duke CS, Fall 2018 62

Adding and Deleting Tuples

• Can insert a single tuple using:
INSERT INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2)

• Can delete all tuples satisfying some
condition (e.g., name = Smith):

DELETE
FROM Students S
WHERE S.name = ‘Smith’

Duke CS, Fall 2018 63

Integrity Constraints (ICs)

• IC: condition that must be true for any instance of the database
– e.g., domain constraints
– ICs are specified when schema is defined
– ICs are checked when relations are modified

• A legal instance of a relation is one that satisfies all specified ICs
– DBMS will not allow illegal instances

• If the DBMS checks ICs, stored data is more faithful to real-world
meaning

– Avoids data entry errors, too!

Duke CS, Fall 2018 64

Keys in a Database

• Key / Candidate Key
• Primary Key
• Super Key
• Foreign Key

• Primary key attributes are underlined in a schema
– Person(pid, address, name)
– Person2(address, name, age, job)

Duke CS, Fall 2018 65

Primary Key Constraints

• A set of fields is a key for a relation if :
1. No two distinct tuples can have same values in all key fields, and
2. This is not true for any subset of the key

• Part 2 false? A superkey

• If there are > 1 keys for a relation, one of the keys is chosen
(by DBA = DB admin) to be the primary key

– E.g., sid is a key for Students
– The set {sid, gpa} is a superkey.

• Any possible benefit to refer to a tuple using primary key
(than any key)?

Duke CS, Fall 2018 66

9/3/19

12

Primary and Candidate Keys in SQL

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY ???)

• “For a given student and course,
there is a single grade.”

Duke CS, Fall 2018 67

• Possibly many candidate keys
– specified using UNIQUE

– one of which is chosen as the primary key.

Primary and Candidate Keys in SQL

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid, cid))

Duke CS, Fall 2018 68

• Possibly many candidate keys
– specified using UNIQUE

– one of which is chosen as the primary key.

• “For a given student and course,
there is a single grade.”

Primary and Candidate Keys in SQL

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid, cid))

• “For a given student and course, there is a
single grade.”

• vs.

• “Students can take only one course, and
receive a single grade for that course; further,
no two students in a course receive the same
grade.”

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY ???,
UNIQUE ???)

Duke CS, Fall 2018 69

• Possibly many candidate keys
– specified using UNIQUE

– one of which is chosen as the primary key.

Primary and Candidate Keys in SQL

Duke CS, Fall 2018 70

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid))

• “For a given student and course, there is a
single grade.”

• vs.

• “Students can take only one course, and
receive a single grade for that course; further,
no two students in a course receive the same
grade.”

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY sid,
UNIQUE (cid, grade))

• Possibly many candidate keys
– specified using UNIQUE

– one of which is chosen as the primary key.

Primary and Candidate Keys in SQL

Duke CS, Fall 2018 71

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid))

• “For a given student and course, there is a
single grade.”

• vs.

• “Students can take only one course, and
receive a single grade for that course; further,
no two students in a course receive the same
grade.”

• Used carelessly, an IC can prevent the storage
of database instances that arise in practice!

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY sid,
UNIQUE (cid, grade))

• Possibly many candidate keys
– specified using UNIQUE

– one of which is chosen as the primary key.

Foreign Keys, Referential Integrity

• Foreign key : Set of fields in one relation that is used to
`refer’ to a tuple in another relation
– Must correspond to primary key of the second relation
– Like a `logical pointer’

• E.g. sid is a foreign key referring to Students:
– Enrolled(sid: string, cid: string, grade: string)
– If all foreign key constraints are enforced, referential

integrity is achieved
– i.e., no dangling references

Duke CS, Fall 2018 72

9/3/19

13

Foreign Keys in SQL
• Only students listed in the Students relation should be

allowed to enroll for courses
CREATE TABLE Enrolled

(sid CHAR(20), cid CHAR(20), grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid) REFERENCES Students)

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

sid cid grade
53666 Carnatic101 C
53666 Reggae203 B
53650 Topology112 A
53666 History105 B

Enrolled
Students

Duke CS, Fall 2018 73

Enforcing Referential Integrity
• Consider Students and Enrolled

– sid in Enrolled is a foreign key that references Students.

• What should be done if an Enrolled tuple with a non-existent
student id is inserted?
– Reject it!

• What should be done if a Students tuple is deleted?
– Three semantics allowed by SQL
1. Also delete all Enrolled tuples that refer to it (cascade delete)
2. Disallow deletion of a Students tuple that is referred to
3. Set sid in Enrolled tuples that refer to it to a default sid
4. (in addition in SQL): Set sid in Enrolled tuples that refer to it to a special

value null, denoting `unknown’ or `inapplicable’

• Similar if primary key of Students tuple is updated
Duke CS, Fall 2018 74

Referential Integrity in SQL

• SQL/92 and SQL:1999 support
all 4 options on deletes and
updates.
– Default is NO ACTION

(delete/update is
rejected)

– CASCADE (also delete all
tuples that refer to
deleted tuple)

– SET NULL / SET DEFAULT (sets
foreign key value of
referencing tuple)

CREATE TABLE Enrolled
(sid CHAR(20) DEFAULT ‘000’,
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid)
REFERENCES Students
ON DELETE CASCADE
ON UPDATE SET DEFAULT)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Where do ICs Come From?
• ICs are based upon the semantics of the real-world enterprise

that is being described in the database relations

• Can we infer ICs from an instance?
– We can check a database instance to see if an IC is violated, but we

can NEVER infer that an IC is true by looking at an instance.
– An IC is a statement about all possible instances!
– From example, we know name is not a key, but the assertion that sid is

a key is given to us.

• Key and foreign key ICs are the most common; more general
ICs supported too

Duke CS, Fall 2018 76

Example Instances

• What does the key (sid, bid, day) in
Reserves mean?

• If the key for the Reserves relation
contained only the attributes (sid,
bid), how would the semantics
differ?

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35

sid bid day

22 101 10/10/96

58 103 11/12/96

Reserves

Sailor

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Views
• A view is just a relation, but we store a definition, rather than

a set of tuples
CREATE VIEW YoungActiveStudents (name, grade)

AS SELECT S.name, E.grade
FROM Students S, Enrolled E
WHERE S.sid = E.sid and S.age<21

• Views can be dropped using the DROP VIEW command

• Views and Security: Views can be used to present necessary information
(or a summary), while hiding details in underlying relation(s)

• the above view hides courses “cid” from E

• More on views later in the course

Duke CS, Fall 2018 CompSci 516: Database Systems 78

9/3/19

14

Can create a new table from a query
on other tables too

SELECT S.name, E.grade
INTO YoungActiveStudents
FROM Students S, Enrolled E
WHERE S.sid = E.sid and S.age<21

Duke CS, Fall 2018 CompSci 516: Database Systems 79

SELECT… INTO.... FROM.... WHERE

“WITH” clause – very useful!

• You will find “WITH” clause very useful!
WITH Temp1 AS

(SELECT ….. ..),
Temp2 AS
(SELECT ….. ..)

SELECT X, Y
FROM TEMP1, TEMP2
WHERE….

• Can simplify complex nested queries

Duke CS, Fall 2018 CompSci 516: Database Systems 80

Overview: General Constraints

• Useful when more general ICs
than keys are involved

• There are also ASSERTIONS to
specify constraints that span
across multiple tables

• There are TRIGGERS too :
procedure that starts
automatically if specified changes
occur to the DBMS

CREATE TABLE Sailors
(sid INTEGER,
sname CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK (rating >= 1

AND rating <= 10)

CREATE TABLE Reserves
(sname CHAR(10),
bid INTEGER,
day DATE,
PRIMARY KEY (bid,day),
CONSTRAINT noInterlakeRes
CHECK (`Interlake’ <>

(SELECT B.bname
FROM Boats B
WHERE B.bid=bid)))Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Triggers
• Trigger: procedure that starts automatically if specified

changes occur to the DBMS
• Three parts:

– Event (activates the trigger)
– Condition (tests whether the triggers should run)
– Action (what happens if the trigger runs)

Duke CS, Fall 2018 CompSci 516: Database Systems 82

CREATE TRIGGER youngSailorUpdate
AFTER INSERT ON SAILORS

REFERENCING NEW TABLE NewSailors
FOR EACH STATEMENT

INSERT
INTO YoungSailors(sid, name, age, rating)
SELECT sid, name, age, rating
FROM NewSailors N
WHERE N.age <= 18

Only FYI, not covered in detail

Summary: SQL

• SQL has a huge number of constructs and possibilities
– You need to learn and practice it on your own
– Given a problem, you should be able to write a SQL query and verify

whether a given one is correct

• Pay attention to NULLs

• Can limit answers using “LIMIT” or “TOP” clauses
– e.g. to output TOP 20 results according to an aggregate
– also can sort using ASC or DESC keywords

Duke CS, Fall 2018 CompSci 516: Database Systems 83

