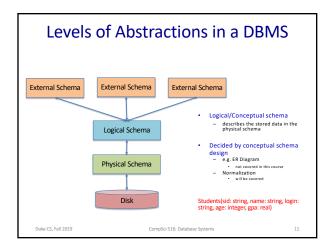
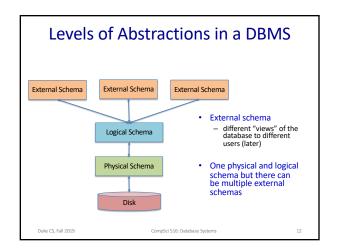
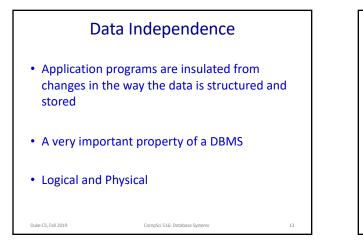
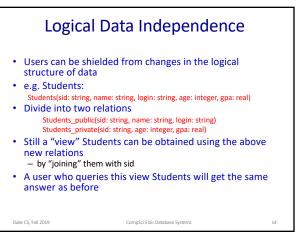
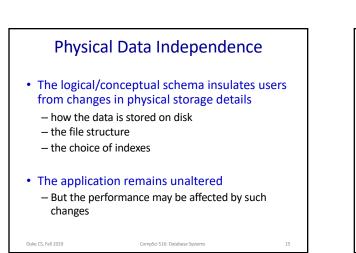

What does a DBMS provide?

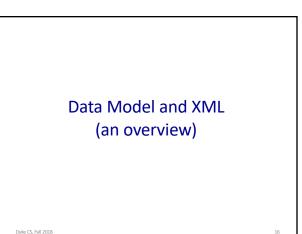












Data Model

- · Applications need to model some real world units
- Entities:

Students, Departments, Courses, Faculty, Organization, Employee, ...

- Relationships:
 - Course enrollments by students, Product sales by an organization
- A data model is a collection of high-level data description constructs that hide many low-level storage details
 Date CS, Fall 209
 CompSci S16: Database Systems

Data Model

- Structure of the data

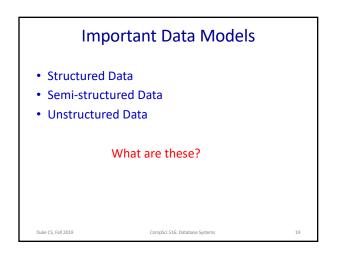
 like arrays or structs in a programming language
 - but at a higher level (conceptual model)

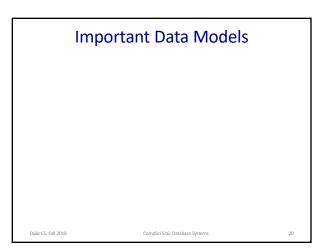
2. Operations on the data

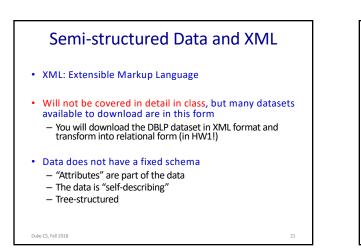
- unlike a programming language, not any operation can be performed

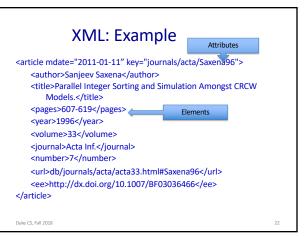
CompSci 516: Database Systems

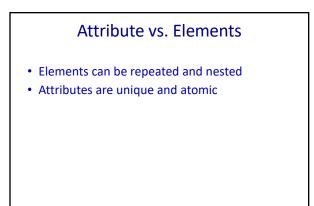
- allow limited sets of queries and modifications
- a strength, not a weakness!

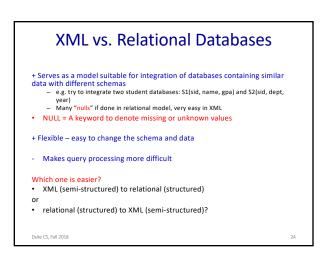

3. Constraints on the data

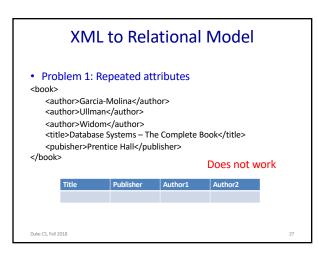

- what the data can be
 e.g. a movie has exactly one title

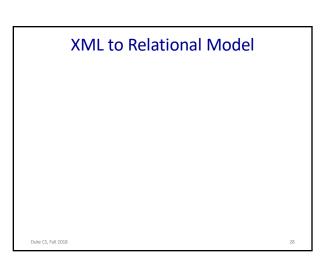

Duke CS, Fall 2019

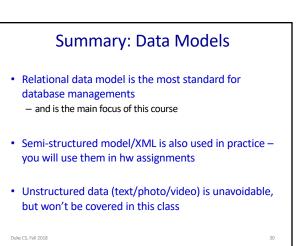

17

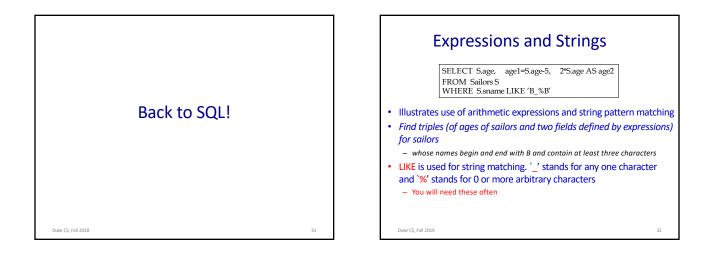

Can Specify:

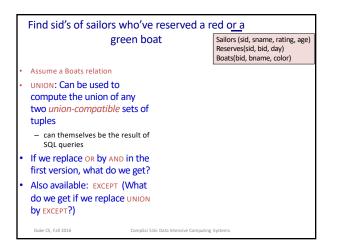


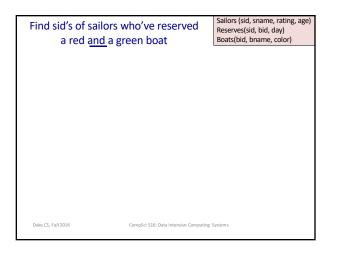


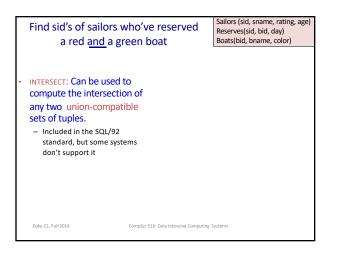


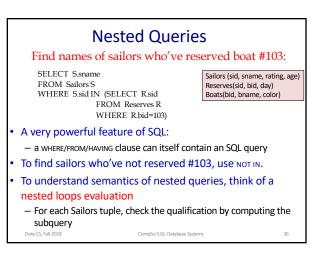


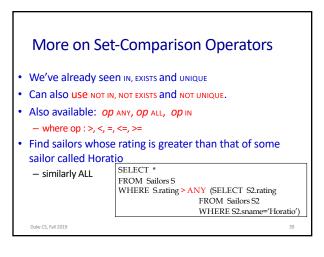

XML to Relational Model XML to Relational Model • Problem 1: Repeated attributes • Problem 1: Repeated attributes <book> <book> <author>Ramakrishnan</author> <author>Ramakrishnan</author> <author>Gehrke</author> <author>Gehrke</author> <title>Database Management Systems</title> <title>Database Management Systems</title> <publisher> McGraw Hill</publisher> </book> <publisher> McGraw Hill </book> Author1 Publisher Titl What is a good relational schema? What if the paper has a single author? Duke CS, Fall 2018 Duke CS, Fall 2018 25

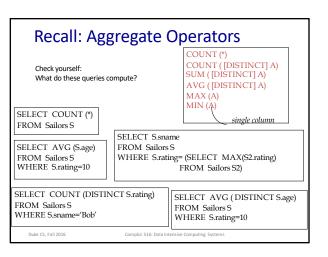


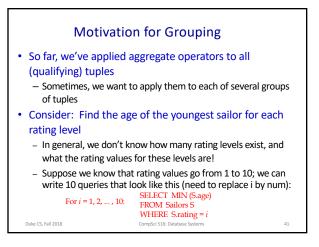


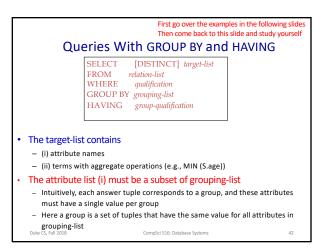

XML to Relational Model	
Dulie CS, Fall 2018	29





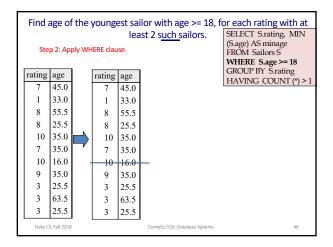


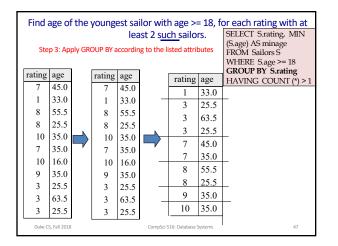


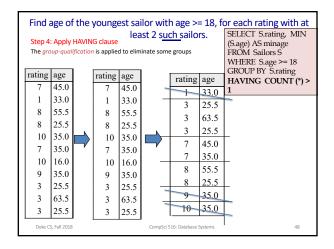


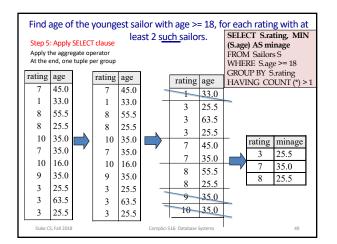
Nested Queries with Correlation Nested Queries with Correlation Find names of sailors who've reserved boat #103: Find names of sailors who've reserved boat #103 SELECT S.sname at most once: FROM Sailors S WHERE EXISTS (SELECT * SELECT S.sname FROM Reserves R FROM Sailors S WHERE R.bid=103 AND S.sid=R.sid) WHERE UNIQUE (SELECT R.bid FROM Reserves R WHERE R.bid=103 AND S.sid=R.sid) EXISTS is another set comparison operator, like IN Illustrates why, in general, subquery must be re-• If UNIQUE is used, and * is replaced by *R.bid*, finds computed for each Sailors tuple sailors with at most one reservation for boat #103 - UNIQUE checks for duplicate tuples Duke CS, Fall 2018 Duke CS, Fall 2018 CompSci 516: Database System 37 CompSci 516: Database System

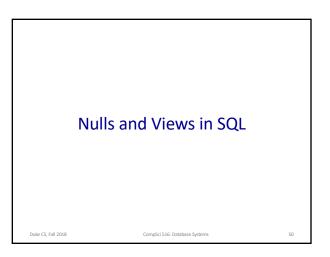
First go over the examples in the following slides Then come back to this slide and study yourself **Conceptual Evaluation** • The cross-product of relation-list is computed • Tuples that fail qualification are discarded • 'Unnecessary' fields are deleted • The remaining tuples are partitioned into groups by the value of attributes in grouping-list • The group-qualification is then applied to eliminate some groups • Expressions in group-qualification must have a single value per group In effect, an attribute in group-qualification that is not an argument of an

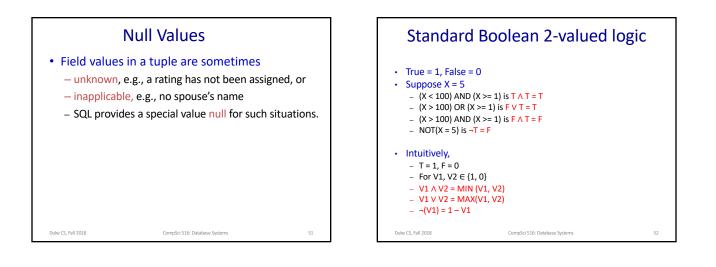

 In effect, an attribute in group-qualification that is not an argument of an aggregate op also appears in grouping-list

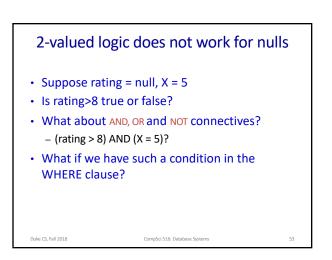

43

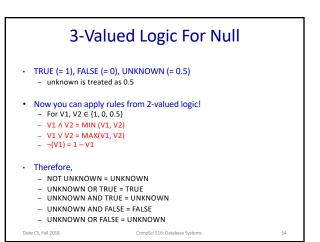

- like "...GROUP BY bid, sid HAVING bid = 3"
- One answer tuple is generated per qualifying group

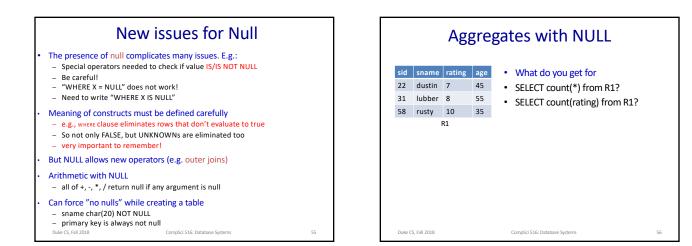

Find age of the youngest sailor with age >= 18, for each rating with at least 2 such sailors. Sailors instance SELECT S.rating, MIN (S.age) AS minage FROM Sailors S sid sname rating age WHERE S.age >= 18 22 dustin 45.0 GROUP BY S.rating 29 33.0 brutus 1 HAVING COUNT (*) >1 31 55 5 lubber 8 32 andy 8 25.5 58 35.0 10 rusty 64 35.0 7 horatio rating minage 71 zorba 10 16.0 Answer relation: 3 25.5 74 35.0 horatio 9 7 35.0 85 25.5 art 3 8 25.5 95 bob 3 63.5 96 frodo 3 25.5 Duke CS, Fall 2018 CompSci 516: Da

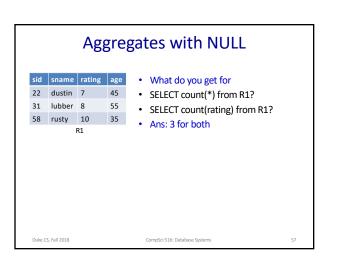

	p 1: For	f the youngest sailor with age >= 18, fo least 2 s <u>uch s</u> ailors. m the cross product: FROM clause e attributes are omitted for simplicity)	SELECT S.rating, MIN (S.age) AS minage FROM Sailors S WHERE S.age >= 18
rating	age		GROUP BY S.rating
7	45.0		HAVING COUNT (*) > 1
1	33.0		
8	55.5		
8	25.5		
10	35.0		
7	35.0		
10	16.0		
9	35.0		
3	25.5		
3	63.5		
3	25.5		
Duke C	S, Fall 2018	CompSci 516: Database Systems	45

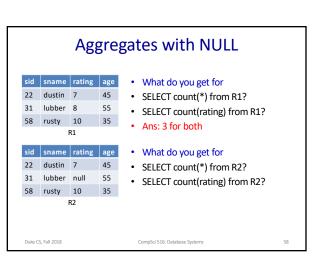


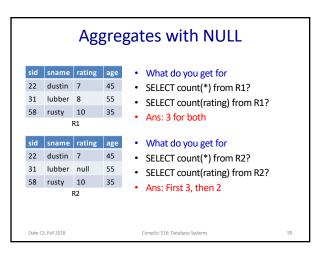


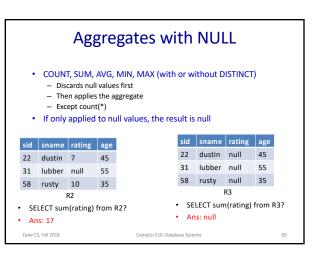


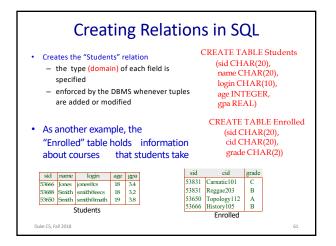


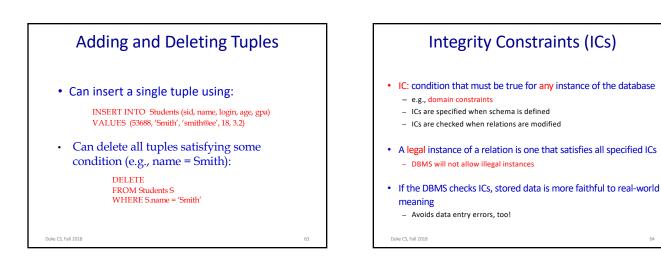




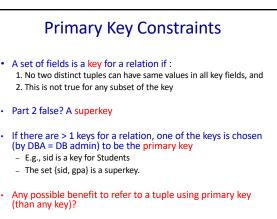








Destroying and Altering Relations DROP TABLE Students Destroys the relation Students — The schema information and the tuples are deleted. ALTER TABLE Students ADD COLUMN firstYear: integer The schema of Students is altered by adding


a new field; every tuple in the current instance is extended with a NULL value in the new field.

Duke CS, Fall 2018

Keys in a Database

- Key / Candidate Key
- Primary Key
- Super Key
- Foreign Key
- Primary key attributes are <u>underlined in a schema</u> – Person(<u>pid</u>, address, name)
 - Person2(<u>address</u>, name, age, job)

Primary and Candidate Keys in SQL

- Possibly many candidate keys
 - specified using UNIQUE
 - one of which is chosen as the primary key.
- "For a given student and course, there is a single grade."
 CREATE TABLE Enrolled (sid CHAR(20), grade CHAR(2),

Duke CS, Fall 2018

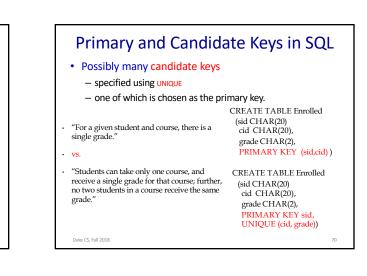
Primary and Candidate Keys in SQL Possibly many candidate keys specified using UNIQUE one of which is chosen as the primary key. "For a given student and course, there is a single grade." CREATE TABLE Enrolled (sid CHAR(20) cid CHAR(20), grade CHAR(2), PRIMARY KEY (sid, cid))

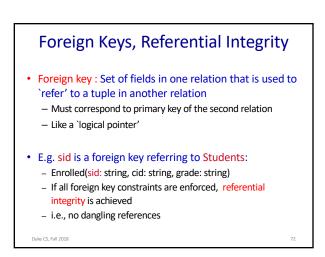
Duke CS, Fall 2018

Primary and Candidate Keys in SQL

Possibly many candidate keys

- specified using UNIQUE
- one of which is chosen as the primary key.
- "For a given student and course, there is a single grade." (sid CHAR(20) cid CHAR(20), grade CHAR(2), PRIMARY KEY (sid, cid))


• vs.


- "Students can take only one course, and receive a single grade for that course; further, no two students in a course receive the same grade."
- CREATE TABLE Enrolled (sid CHAR(20) cid CHAR(20), grade CHAR(2), PRIMARY KEY ???, UNIQUE ???)

CREATE TABLE Enrolled

PRIMARY KEY ???)

	Primary and Candidate Keys in SQL					
	Possibly many candidate keys	sibly many candidate keys				
	 specified using UNIQUE 					
	 one of which is chosen as the pri 	mary key.				
	"For a given student and course, there is a single grade."	CREATE TABLE Enrolled (sid CHAR(20) cid CHAR(20), grade CHAR(2), PRIMARY KEY (sid,cid))				
•	"Students can take only one course, and receive a single grade for that course; further, no two students in a course receive the same grade."	CREATE TABLE Enrolled (sid CHAR(20) cid CHAR(20), grade CHAR(2),				
•	Used carelessly, an IC can prevent the storage of database instances that arise in practice! Duke CS, Fall 2018	PRIMARY KEY sid, UNIQUE (cid, grade)) 71				

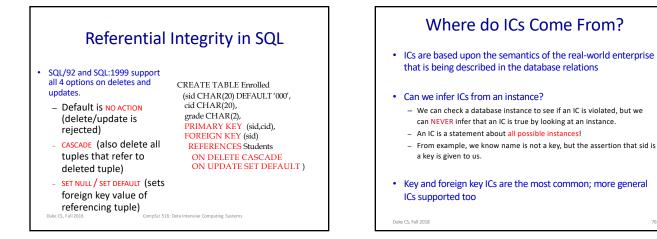
Foreign Keys in SQL

- Only students listed in the Students relation should be allowed to enroll for courses
 - CREATE TABLE Enrolled (sid CHAR(20), cid CHAR(20), grade CHAR(2), PRIMARY KEY (sid,cid), FOREIGN KEY (sid) REFERENCES Students)

sid	cid	grade	Studen	its			
53666	Carnatic101	C	sid	name	login	age	gpa
53666	Reggae203	B	→ 53666	Jones	jones@cs	18	3.4
53650	Topology112	A	53688	Smith	smith@eecs	18	3.2
	History105	B	→ 53650	Smith	smith@math	19	3.8

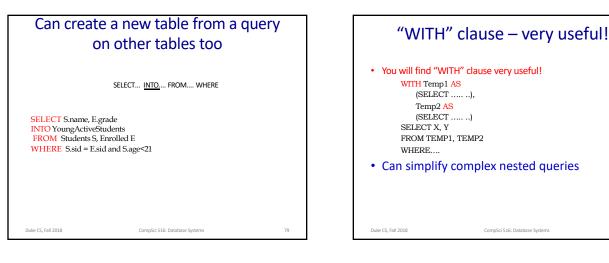
Enforcing Referential Integrity

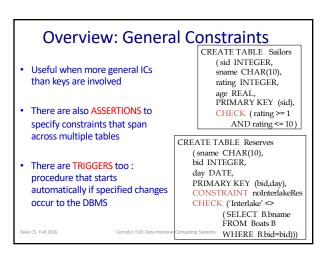
- Consider Students and Enrolled

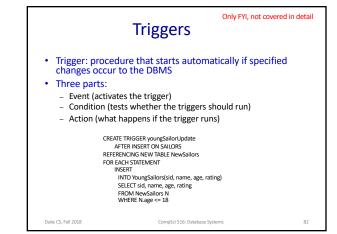

 sid in Enrolled is a foreign key that references Students.

 What should be done if an Enrolled tuple with a non-existent student id is inserted?

 Reject it!


 What should be done if a Students tuple is deleted?


 Three semantics allowed by SQL
 - 1. Also delete all Enrolled tuples that refer to it (cascade delete)
 - 2. Disallow deletion of a Students tuple that is referred to
 - 3. Set sid in Enrolled tuples that refer to it to a default sid
 - (in addition in SQL): Set sid in Enrolled tuples that refer to it to a special value null, denoting `unknown' or `inapplicable'
- Similar if primary key of Students tuple is updated



	Views
•	A view is just a relation, but we store a definition, rather than a set of tuples
	CREATE VIEW YoungActiveStudents (name, grade) AS SELECT S.name, E.grade FROM Students S, Enrolled E WHERE S.sid = E.sid and S.age<21
	Views can be dropped using the DROP VIEW command
	Views and Security: Views can be used to present necessary information (or a summary), while hiding details in underlying relation(s) • the above view hides courses "cid" from E
	More on views later in the course
	Duke CS, Fall 2018 CompSci 516: Database Systems 78

Summary: SQL

• SQL has a huge number of constructs and possibilities

- You need to learn and practice it on your own

- Given a problem, you should be able to write a SQL query and verify whether a given one is correct
- Pay attention to NULLs
- Can limit answers using "LIMIT" or "TOP" clauses
 - e.g. to output TOP 20 results according to an aggregate
 - also can sort using ASC or DESC keywords

Duke CS, Fall 2018

CompSci 516: Database Systems

83