
9/5/19

1

CompSci 516
Database Systems

Lecture 3
SQL
RC
RA

Instructor: Sudeepa Roy

1Duke CS, Fall 2019 CompSci 516: Database Systems

Announcements
• Lab-1 makeup instructions sent on piazza
• Let me know if you are still not on piazza
• HW1 will be posted after the class

– Deadlines in stages
– First deadline on 09/17

Duke CS, Fall 2019 2CompSci 516: Database Systems

Today’s topic
• Finish SQL
• RC

• Next week:
– Tuesday: Guest Lecture by Junyang Gao: RA
– Thursday: Lab on RA

Duke CS, Fall 2019 3

Acknowledgement:
The following slides have been created adapting the
instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and Dr. Gehrke.CompSci 516: Database Systems

Nulls and Views in SQL

Duke CS, Fall 2019 4CompSci 516: Database Systems

Null Values
• Field values in a tuple are sometimes

– unknown, e.g., a rating has not been assigned, or
– inapplicable, e.g., no spouse’s name
– SQL provides a special value null for such situations.

Duke CS, Fall 2019 5CompSci 516: Database Systems

Standard Boolean 2-valued logic

• True = 1, False = 0
• Suppose X = 5

– (X < 100) AND (X >= 1) is T ∧ T = T
– (X > 100) OR (X >= 1) is F ∨ T = T
– (X > 100) AND (X >= 1) is F ∧ T = F
– NOT(X = 5) is ¬T = F

• Intuitively,
– T = 1, F = 0
– For V1, V2 ∈ {1, 0}
– V1 ∧ V2 = MIN (V1, V2)
– V1 ∨ V2 = MAX(V1, V2)
– ¬(V1) = 1 – V1

Duke CS, Fall 2019 6CompSci 516: Database Systems

9/5/19

2

2-valued logic does not work for nulls

• Suppose rating = null, X = 5
• Is rating>8 true or false?
• What about AND, OR and NOT connectives?

– (rating > 8) AND (X = 5)?

• What if we have such a condition in the
WHERE clause?

Duke CS, Fall 2019 7CompSci 516: Database Systems

3-Valued Logic For Null

• TRUE (= 1), FALSE (= 0), UNKNOWN (= 0.5)
– unknown is treated as 0.5

• Now you can apply rules from 2-valued logic!
– For V1, V2 ∈ {1, 0, 0.5}
– V1 ∧ V2 = MIN (V1, V2)
– V1 ∨ V2 = MAX(V1, V2)
– ¬(V1) = 1 – V1

• Therefore,
– NOT UNKNOWN = UNKNOWN
– UNKNOWN OR TRUE = TRUE
– UNKNOWN AND TRUE = UNKNOWN
– UNKNOWN AND FALSE = FALSE
– UNKNOWN OR FALSE = UNKNOWN

Duke CS, Fall 2019 8

End of Lecture 3

CompSci 516: Database Systems

New issues for Null
• The presence of null complicates many issues. E.g.:

– Special operators needed to check if value IS/IS NOT NULL
– Be careful!
– “WHERE X = NULL” does not work!
– Need to write “WHERE X IS NULL”

• Meaning of constructs must be defined carefully
– e.g., WHERE clause eliminates rows that don’t evaluate to true
– So not only FALSE, but UNKNOWNs are eliminated too
– very important to remember!

• But NULL allows new operators (e.g. outer joins)

• Can force ”no nulls” while creating a table
– sname char(20) NOT NULL
– primary key is always not null

Duke CS, Fall 2019 9CompSci 516: Database Systems

Aggregates with NULL

• What do you get for
• SELECT count(*) from R1?
• SELECT count(rating) from R1?

Duke CS, Fall 2019 10

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35
R1

CompSci 516: Database Systems

Aggregates with NULL

• What do you get for
• SELECT count(*) from R1?
• SELECT count(rating) from R1?

Duke CS, Fall 2019 11

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35
R1

CompSci 516: Database Systems

Aggregates with NULL

• What do you get for
• SELECT count(*) from R1?
• SELECT count(rating) from R1?

Duke CS, Fall 2019 12

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35
R1

• What do you get for
• SELECT count(*) from R2?
• SELECT count(rating) from R2?

sid sname rating age

22 dustin 7 45

31 lubber null 55

58 rusty 10 35
R2

CompSci 516: Database Systems

9/5/19

3

Aggregates with NULL

• What do you get for
• SELECT count(*) from R1?
• SELECT count(rating) from R1?

Duke CS, Fall 2019 13

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35
R1

• What do you get for
• SELECT count(*) from R2?
• SELECT count(rating) from R2?

sid sname rating age

22 dustin 7 45

31 lubber null 55

58 rusty 10 35
R2

CompSci 516: Database Systems

Aggregates with NULL

• COUNT, SUM, AVG, MIN, MAX (with or without DISTINCT)
– Discards null values first
– Then applies the aggregate
– Except count(*)

• If only applied to null values, the result is null

Duke CS, Fall 2019 14

• SELECT sum(rating) from R2?

sid sname rating age

22 dustin 7 45

31 lubber null 55

58 rusty 10 35
R2

• SELECT sum(rating) from R3?

sid sname rating age

22 dustin null 45

31 lubber null 55

58 rusty null 35
R3

CompSci 516: Database Systems

Creating Relations in SQL
• Creates the “Students” relation

– the type (domain) of each field is
specified

– enforced by the DBMS whenever tuples
are added or modified

• As another example, the
“Enrolled” table holds information
about courses that students take

CREATE TABLE Students
(sid CHAR(20),
name CHAR(20),
login CHAR(10),
age INTEGER,
gpa REAL)

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2))

Duke CS, Fall 2019 15

sid cid grade
53831 Carnatic101 C
53831 Reggae203 B
53650 Topology112 A
53666 History105 B

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

Students
Enrolled

CompSci 516: Database Systems

Destroying and Altering Relations

• Destroys the relation Students
– The schema information and the tuples are deleted.

DROP TABLE Students

• The schema of Students is altered by adding
a new field; every tuple in the current
instance is extended with a NULL value in
the new field.

ALTER TABLE Students
ADD COLUMN firstYear: integer

Duke CS, Fall 2019 16CompSci 516: Database Systems

Adding and Deleting Tuples

• Can insert a single tuple using:
INSERT INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2)

• Can delete all tuples satisfying some
condition (e.g., name = Smith):

DELETE
FROM Students S
WHERE S.name = ‘Smith’

Duke CS, Fall 2019 17CompSci 516: Database Systems

Integrity Constraints (ICs)

• IC: condition that must be true for any instance of the database
– e.g., domain constraints
– ICs are specified when schema is defined
– ICs are checked when relations are modified

• A legal instance of a relation is one that satisfies all specified ICs
– DBMS will not allow illegal instances

• If the DBMS checks ICs, stored data is more faithful to real-world
meaning

– Avoids data entry errors, too!

Duke CS, Fall 2019 18CompSci 516: Database Systems

9/5/19

4

Keys in a Database

• Key / Candidate Key
• Primary Key
• Super Key
• Foreign Key

• Primary key attributes are underlined in a schema
– Person(pid, address, name)
– Person2(address, name, age, job)

Duke CS, Fall 2019 19CompSci 516: Database Systems

Primary Key Constraints

• A set of fields is a key for a relation if :
1. No two distinct tuples can have same values in all key fields, and
2. This is not true for any subset of the key

• Part 2 false? A superkey

• If there are > 1 keys for a relation, one of the keys is chosen
(by DBA = DB admin) to be the primary key

– E.g., sid is a key for Students
– The set {sid, gpa} is a superkey.

• Any possible benefit to refer to a tuple using primary key
(than any key)?

Duke CS, Fall 2019 20CompSci 516: Database Systems

Primary and Candidate Keys in SQL

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY ???)

• “For a given student and course,
there is a single grade.”

Duke CS, Fall 2019 21

• Possibly many candidate keys
– specified using UNIQUE

– one of which is chosen as the primary key.

CompSci 516: Database Systems

Primary and Candidate Keys in SQL

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid, cid))

Duke CS, Fall 2019 22

• Possibly many candidate keys
– specified using UNIQUE

– one of which is chosen as the primary key.

• “For a given student and course,
there is a single grade.”

CompSci 516: Database Systems

Primary and Candidate Keys in SQL

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid, cid))

• “For a given student and course, there is a
single grade.”

• vs.

• “Students can take only one course, and
receive a single grade for that course; further,
no two students in a course receive the same
grade.”

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY ???,
UNIQUE ???)

Duke CS, Fall 2019 23

• Possibly many candidate keys
– specified using UNIQUE

– one of which is chosen as the primary key.

CompSci 516: Database Systems

Primary and Candidate Keys in SQL

Duke CS, Fall 2019 24

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid))

• “For a given student and course, there is a
single grade.”

• vs.

• “Students can take only one course, and
receive a single grade for that course; further,
no two students in a course receive the same
grade.”

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
???

• Possibly many candidate keys
– specified using UNIQUE

– one of which is chosen as the primary key.

CompSci 516: Database Systems

9/5/19

5

Primary and Candidate Keys in SQL

Duke CS, Fall 2019 25

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid))

• “For a given student and course, there is a
single grade.”

• vs.

• “Students can take only one course, and
receive a single grade for that course; further,
no two students in a course receive the same
grade.”

• Used carelessly, an IC can prevent the storage
of database instances that arise in practice!

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
????

• Possibly many candidate keys
– specified using UNIQUE

– one of which is chosen as the primary key.

CompSci 516: Database Systems

Foreign Keys, Referential Integrity

• Foreign key : Set of fields in one relation that is used to
`refer’ to a tuple in another relation
– Must correspond to primary key of the second relation
– Like a `logical pointer’

• E.g. sid is a foreign key referring to Students:
– Enrolled(sid: string, cid: string, grade: string)
– If all foreign key constraints are enforced, referential

integrity is achieved
– i.e., no dangling references

Duke CS, Fall 2019 26CompSci 516: Database Systems

Foreign Keys in SQL
• Only students listed in the Students relation should be

allowed to enroll for courses
CREATE TABLE Enrolled

(sid CHAR(20), cid CHAR(20), grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid) REFERENCES Students)

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

sid cid grade
53666 Carnatic101 C
53666 Reggae203 B
53650 Topology112 A
53666 History105 B

Enrolled
Students

Duke CS, Fall 2019 27CompSci 516: Database Systems

Enforcing Referential Integrity
• Consider Students and Enrolled

– sid in Enrolled is a foreign key that references Students.

• What should be done if an Enrolled tuple with a non-existent
student id is inserted?
– Reject it!

• What should be done if a Students tuple is deleted?
– Three semantics allowed by SQL
1. Also delete all Enrolled tuples that refer to it (cascade delete)
2. Disallow deletion of a Students tuple that is referred to
3. Set sid in Enrolled tuples that refer to it to a default sid
4. (in addition in SQL): Set sid in Enrolled tuples that refer to it to a special

value null, denoting `unknown’ or `inapplicable’

• Similar if primary key of Students tuple is updated
Duke CS, Fall 2019 28CompSci 516: Database Systems

Referential Integrity in SQL

• SQL/92 and SQL:1999 support
all 4 options on deletes and
updates.
– Default is NO ACTION

(delete/update is
rejected)

– CASCADE (also delete all
tuples that refer to
deleted tuple)

– SET NULL / SET DEFAULT (sets
foreign key value of
referencing tuple)

CREATE TABLE Enrolled
(sid CHAR(20) DEFAULT ‘000’,
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid)
REFERENCES Students
ON DELETE CASCADE
ON UPDATE SET DEFAULT)

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Where do ICs Come From?
• ICs are based upon the semantics of the real-world enterprise

that is being described in the database relations

• Can we infer ICs from an instance?
– We can check a database instance to see if an IC is violated, but we

can NEVER infer that an IC is true by looking at an instance.
– An IC is a statement about all possible instances!
– From example, we know name is not a key, but the assertion that sid is

a key is given to us.

• Key and foreign key ICs are the most common; more general
ICs supported too

Duke CS, Fall 2019 30CompSci 516: Database Systems

9/5/19

6

Example Instances

• What does the key (sid, bid, day) in
Reserves mean?

• If the key for the Reserves relation
contained only the attributes (sid,
bid), how would the semantics
differ?

sid sname rating age

22 dustin 7 45

31 lubber 8 55

58 rusty 10 35

sid bid day

22 101 10/10/96

58 103 11/12/96

Reserves

Sailor

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Views
• A view is just a relation, but we store a definition, rather than

a set of tuples
CREATE VIEW YoungActiveStudents (name, grade)

AS SELECT S.name, E.grade
FROM Students S, Enrolled E
WHERE S.sid = E.sid and S.age<21

• Views can be dropped using the DROP VIEW command

• Views and Security: Views can be used to present necessary information
(or a summary), while hiding details in underlying relation(s)

• the above view hides courses “cid” from E

Duke CS, Fall 2019 32

Students(sid, name)
Enrolled(sid, cid, grade)

CompSci 516: Database Systems

Can create a new table from a query
on other tables too

SELECT S.name, E.grade
INTO YoungActiveStudents
FROM Students S, Enrolled E
WHERE S.sid = E.sid and S.age<21

Duke CS, Fall 2019 33

SELECT… INTO.... FROM.... WHERE

CompSci 516: Database Systems

“WITH” clause – very useful!

• You will find “WITH” clause very useful!
WITH Temp1 AS

(SELECT ….. ..),
Temp2 AS
(SELECT ….. ..)

SELECT X, Y
FROM TEMP1, TEMP2
WHERE….

• Can simplify complex nested queries

Duke CS, Fall 2019 34CompSci 516: Database Systems

Overview: General Constraints

• Useful when more general ICs
than keys are involved

• There are also ASSERTIONS to
specify constraints that span
across multiple tables

• There are TRIGGERS too :
procedure that starts
automatically if specified changes
occur to the DBMS

CREATE TABLE Sailors
(sid INTEGER,
sname CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK (rating >= 1

AND rating <= 10)

CREATE TABLE Reserves
(sname CHAR(10),
bid INTEGER,
day DATE,
PRIMARY KEY (bid,day),
CONSTRAINT noInterlakeRes
CHECK (`Interlake’ <>

(SELECT B.bname
FROM Boats B
WHERE B.bid=bid)))Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems

Summary: SQL

• SQL has a huge number of constructs and possibilities
– You need to learn and practice it on your own

• Can limit answers using “LIMIT” or “TOP” clauses
– e.g. to output TOP 20 results according to an aggregate
– also can sort using ASC or DESC keywords

• We learnt
– Creating/modifying relations

– Specifying integrity constraints
– Key/candidate key, superkey, primary key, foreign key
– Conceptual evaluation of SQL queries

– Joins
– Group bys and aggregates

– Nested queries
– NULLs

– Views

Duke CS, Fall 2019 36CompSci 516: Database Systems

9/5/19

7

Relational Query Languages

Duke CS, Fall 2019 CompSci 516: Database Systems 37

Relational Query Languages

• Query languages: Allow manipulation and
retrieval of data from a database

• Relational model supports simple, powerful QLs:
– Strong formal foundation based on logic
– Allows for much optimization

• Query Languages != programming languages
– QLs not intended to be used for complex calculations
– QLs support easy, efficient access to large data sets

Duke CS, Fall 2019 CompSci 516: Database Systems 38

Formal Relational Query Languages

• Two “mathematical” Query Languages form the
basis for “real” languages (e.g. SQL), and for
implementation:
– Relational Calculus: Lets users describe what they

want, rather than how to compute it (Non-
operational, declarative, or procedural)

– Relational Algebra: More operational, very useful
for representing execution plans

• Note: Declarative (RC, SQL) vs. Operational (RA)

Duke CS, Fall 2019 CompSci 516: Database Systems 39

Relational Calculus (RC)

Duke CS, Fall 2019 CompSci 516: Database Systems 40

Logic Notations

• $ There exists
• " For all
• ∧ Logical AND
• ∨ Logical OR
• ¬ NOT
• ⇒ Implies

TRC: example

• Find the name and age of all sailors with a rating above 7

{P | ∃ S ϵ Sailors (S.rating > 7 ⋀ P.sname = S.sname ⋀ P.age = S.age)}

• P is a tuple variable
– with exactly two fields sname and age (schema of the output relation)
– P.sname = S.sname ⋀ P.age = S.age gives values to the fields of an answer

tuple

• Use parentheses, ∀ ∃ ⋁ ⋀ > < = ≠ ¬ etc as necessary
• A ⇒ B is very useful too

– next slide
Duke CS, Fall 2019 CompSci 516: Database Systems 42

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

$ There exists

9/5/19

8

A ⇒ B

• A “implies” B
• Equivalently, if A is true, B must be true
• Equivalently, ¬ A ⋁ B, i.e.

– either A is false (then B can be anything)
– otherwise (i.e. A is true) B must be true

Duke CS, Fall 2019 CompSci 516: Database Systems 43

Useful Logical Equivalences

• "x P(x) = ¬$x [¬P(x)]

• ¬(P∨Q) = ¬ P∧ ¬ Q
• ¬(P ∧ Q) = ¬ P ∨ ¬ Q

– Similarly, ¬(¬P∨Q) = P∧ ¬ Q etc.

• A Þ B = ¬ A ∨ B

Duke CS, Fall 2019 CompSci 516: Database Systems 44

$ There exists
" For all
∧ Logical AND
∨ Logical OR
¬ NOT

de Morgan’s laws

TRC: example

• Find the names of sailors who have reserved at least two boats

Duke CS, Fall 2019 CompSci 516: Database Systems 45

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

TRC: example

• Find the names of sailors who have reserved at least two boats

{P | ∃ S ϵ Sailors (∃ R1 ϵ Reserves ∃ R2 ϵ Reserves (S.sid = R1.sid
⋀ S.sid = R2.sid ⋀ R1.bid ≠ R2.bid) ⋀ P.sname = S.sname)}

Duke CS, Fall 2019 CompSci 516: Database Systems 46

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

TRC: example

• Find the names of sailors who have reserved all boats
• Called the “Division” operation

Duke CS, Fall 2019 CompSci 516: Database Systems 47

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

TRC: example

• Find the names of sailors who have reserved all boats
• Division operation in RA!

{P | ∃ S ϵ Sailors [∀B ϵ Boats (∃ R ϵ Reserves (S.sid = R.sid⋀
R.bid = B.bid))] ⋀ (P.sname = S.sname)}

Duke CS, Fall 2019 CompSci 516: Database Systems 48

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

9/5/19

9

TRC: example

• Find the names of sailors who have reserved all red boats

Duke CS, Fall 2019 CompSci 516: Database Systems 49

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

How will you change the previous TRC expression?

TRC: example

• Find the names of sailors who have reserved all red boats
{P | ∃ S ϵ Sailors (∀B ϵ Boats (B.color = ‘red’ ⇒ (∃ R ϵ Reserves
(S.sid = R.sid⋀ R.bid = B.bid))) ⋀ P.sname = S.sname)}

Recall that A ⇒B is logically equivalent to ¬ A ⋁ B
so ⇒ can be avoided, but it is cleaner and more intuitive

Duke CS, Fall 2019 CompSci 516: Database Systems 50

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

More Examples: RC

• The famous “Drinker-Beer-Bar” example!

Duke CS, Fall 2019 CompSci 516: Database Systems 51

Acknowledgement: examples and slides by Profs. Balazinska
and Suciu, and the [GUW] book

UNDERSTAND THE DIFFERENCE IN ANSWERS
FOR ALL FOUR DRINKERS

Drinker Category 1

Find drinkers that frequent some bar that serves some beer they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

52CompSci 516: Database SystemsDuke CS, Fall 2019

Drinker Category 1
Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

53CompSci 516: Database SystemsDuke CS, Fall 2019

Drinker Category 2
Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

54CompSci 516: Database SystemsDuke CS, Fall 2019

9/5/19

10

Drinker Category 2
Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

55CompSci 516: Database SystemsDuke CS, Fall 2019

Drinker Category 3
Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

56CompSci 516: Database SystemsDuke CS, Fall 2019

Drinker Category 3
Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

57CompSci 516: Database SystemsDuke CS, Fall 2019

Drinker Category 4
Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

58CompSci 516: Database SystemsDuke CS, Fall 2019

Drinker Category 4
Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

59Duke CS, Fall 2019 CompSci 516: Database Systems

Why should we care about RC
• RC is declarative, like SQL, and unlike RA (which is

operational)
• Gives foundation of database queries in first-order

logic
– you cannot express all aggregates in RC, e.g. cardinality of

a relation or sum (possible in extended RA and SQL)
– still can express conditions like “at least two tuples” (or any

constant)
• RC expression may be much simpler than SQL queries

– and easier to check for correctness than SQL
– power to use " and Þ
– then you can systematically go to a “correct” SQL

query

Duke CS, Fall 2019 CompSci 516: Database Systems 60

9/5/19

11

From RC to SQL

Q(x) = $y. Likes(x, y)∧"z.(Serves(z,y) Þ Frequents(x,z))

Query: Find drinkers that like some beer (so much) that
they frequent all bars that serve it

CompSci 516: Database Systems 61

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Duke CS, Fall 2019

From RC to SQL

Q(x) = $y. Likes(x, y)∧"z.(Serves(z,y) Þ Frequents(x,z))

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it

Step 1: Replace " with $ using de Morgan’s Laws

Q(x) = $y. Likes(x, y)∧ ¬$z.(Serves(z,y) ∧ ¬Frequents(x,z))

CompSci 516: Database Systems 62

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

"x P(x) same as
¬$x ¬P(x)

¬(¬P∨Q) same as
P∧ ¬ Q

º Q(x) = $y. Likes(x, y)∧"z.(¬ Serves(z,y) ∨ Frequents(x,z))

Duke CS, Fall 2019

From RC to SQL

SELECT DISTINCT L.drinker
FROM Likes L
WHERE not exists

(SELECT S.bar
FROM Serves S
WHERE L.beer=S.beer

AND not exists (SELECT *
FROM Frequents F
WHERE F.drinker=L.drinker

AND F.bar=S.bar))

CompSci 516: Database Systems 63

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Duke CS, Fall 2019

Q(x) = $y. Likes(x, y) ∧¬ $z.(Serves(z,y)∧¬Frequents(x,z))

Step 2: Translate into SQL

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it

We will see a
“methodical and correct”
translation trough
“safe queries”
in Datalog

