
CompSci 516
Database Systems

Lecture 4
SQL

Instructor: Sudeepa Roy

1Duke CS, Fall 2019 CompSci 516: Database Systems



Announcements
• Lab-1 makeup instructions sent on piazza

– Please respond by 3 pm today if you have missed 
the lab

• Let me know if you are still not on piazza
• HW1 will be posted after the class

– On sakai (data  is already there)
– Deadlines in stages
– First deadline on 09/17

Duke CS, Fall 2019 2CompSci 516: Database Systems



Today’s topic
• Finish SQL
• RC

• Next week:
– Tuesday: Guest Lecture by Junyang Gao: RA
– Thursday: Lab on RA

Duke CS, Fall 2019 3

Acknowledgement: 
The following slides have been created adapting the
instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and  Dr. Gehrke.CompSci 516: Database Systems



Nulls and Views in SQL

Duke CS, Fall 2019 4CompSci 516: Database Systems



Null Values
• Field values in a tuple are sometimes 

– unknown, e.g., a rating has not been assigned, or 
– inapplicable, e.g., no spouse’s name
– SQL provides a special value null for such situations.

Duke CS, Fall 2019 5CompSci 516: Database Systems



Standard Boolean 2-valued logic

• True = 1, False = 0
• Suppose X = 5

– (X < 100) AND (X >= 1) is T ∧ T = T
– (X > 100) OR (X >= 1) is F ∨ T = T
– (X > 100) AND (X >= 1) is F ∧ T = F
– NOT(X = 5) is ¬T = F

• Intuitively,
– T = 1, F = 0
– For V1, V2 ∈ {1, 0}
– V1 ∧ V2 = MIN (V1, V2)
– V1 ∨ V2 = MAX(V1, V2)
– ¬(V1) = 1 – V1

Duke CS, Fall 2019 6CompSci 516: Database Systems



2-valued logic does not work for nulls

• Suppose rating = null, X = 5
• Is rating>8 true or false?
• What about AND, OR and NOT connectives?

– (rating > 8) AND (X = 5)?

• What if we have such a condition in the 
WHERE clause?

Duke CS, Fall 2019 7CompSci 516: Database Systems



3-Valued Logic For Null

• TRUE (= 1), FALSE (= 0), UNKNOWN (= 0.5)
– unknown is treated as 0.5

• Now you can apply rules from 2-valued logic!
– For V1, V2 ∈ {1, 0, 0.5}
– V1 ∧ V2 = MIN (V1, V2)
– V1 ∨ V2 = MAX(V1, V2)
– ¬(V1) = 1 – V1

• Therefore, 
– NOT UNKNOWN = UNKNOWN
– UNKNOWN OR TRUE = TRUE
– UNKNOWN AND TRUE = UNKNOWN
– UNKNOWN AND FALSE = FALSE
– UNKNOWN OR FALSE = UNKNOWN

Duke CS, Fall 2019 8

End of Lecture 3

CompSci 516: Database Systems



New issues for Null
• The presence of null complicates many issues. E.g.:

– Special operators needed to check if value IS/IS NOT NULL
– Be careful! 
– “WHERE X = NULL” does not work!
– Need to write “WHERE X IS NULL”

• Meaning of constructs must be defined carefully
– e.g., WHERE clause eliminates rows that don’t evaluate to true
– So not only FALSE, but UNKNOWNs are eliminated too
– very important to remember!

• But NULL allows new operators (e.g. outer joins)

• Can force ”no nulls” while creating a table
– sname char(20) NOT NULL
– primary key is always not nullDuke CS, Fall 2019 9CompSci 516: Database Systems



Aggregates with NULL

• What do you get for
• SELECT count(*) from R1?
• SELECT count(rating) from R1?

Duke CS, Fall 2019 10

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

R1

CompSci 516: Database Systems



Aggregates with NULL

• What do you get for
• SELECT count(*) from R1?
• SELECT count(rating) from R1?
• Ans: 3 for both

Duke CS, Fall 2019 11

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

R1

CompSci 516: Database Systems



Aggregates with NULL

• What do you get for
• SELECT count(*) from R1?
• SELECT count(rating) from R1?
• Ans: 3 for both

Duke CS, Fall 2019 12

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

R1

• What do you get for
• SELECT count(*) from R2?
• SELECT count(rating) from R2?

sid sname rating age
22 dustin 7 45
31 lubber null 55
58 rusty 10 35

R2

CompSci 516: Database Systems



Aggregates with NULL

• What do you get for
• SELECT count(*) from R1?
• SELECT count(rating) from R1?
• Ans: 3 for both

Duke CS, Fall 2019 13

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

R1

• What do you get for
• SELECT count(*) from R2?
• SELECT count(rating) from R2?
• Ans: First 3, then 2

sid sname rating age
22 dustin 7 45
31 lubber null 55
58 rusty 10 35

R2

CompSci 516: Database Systems



Aggregates with NULL

• COUNT, SUM, AVG, MIN, MAX (with or without DISTINCT)
– Discards null values first
– Then applies the aggregate
– Except count(*)

• If only applied to null values, the result is null

Duke CS, Fall 2019 14

• SELECT sum(rating) from R2?
• Ans: 17

sid sname rating age
22 dustin 7 45
31 lubber null 55
58 rusty 10 35

R2
• SELECT sum(rating) from R3?
• Ans: null

sid sname rating age
22 dustin null 45
31 lubber null 55
58 rusty null 35

R3

CompSci 516: Database Systems



Creating Relations in SQL
• Creates the “Students” relation

– the  type (domain) of each field is 
specified

– enforced by the DBMS whenever tuples 
are added or modified

• As another example, the   
“Enrolled” table holds    information 
about courses       that students take

CREATE TABLE Students
(sid CHAR(20), 
name CHAR(20), 
login CHAR(10),
age INTEGER,
gpa REAL)  

CREATE TABLE Enrolled
(sid CHAR(20), 
cid CHAR(20), 
grade CHAR(2))  

Duke CS, Fall 2019 15

sid cid grade
53831 Carnatic101 C
53831 Reggae203 B
53650 Topology112 A
53666 History105 B

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

Students
Enrolled

CompSci 516: Database Systems



Destroying and Altering Relations

• Destroys the relation Students
– The schema information and the tuples are deleted.

DROP TABLE  Students 

• The schema of Students is altered by adding 
a new field; every tuple in the current 
instance is extended with a NULL value in 
the new field.

ALTER TABLE  Students 
ADD COLUMN firstYear: integer

Duke CS, Fall 2019 16CompSci 516: Database Systems



Adding and Deleting Tuples

• Can insert a single tuple using:
INSERT INTO  Students (sid, name, login, age, gpa)
VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2)

• Can delete all tuples satisfying some 
condition (e.g., name = Smith):

DELETE
FROM Students S
WHERE S.name = ‘Smith’

Duke CS, Fall 2019 17CompSci 516: Database Systems



Integrity Constraints (ICs)

• IC: condition that must be true for any instance of the database
– e.g., domain constraints
– ICs are specified when schema is defined
– ICs are checked when relations are modified

• A legal instance of a relation is one that satisfies all specified ICs
– DBMS will not allow illegal instances

• If the DBMS checks ICs, stored data is more faithful to real-world 
meaning

– Avoids data entry errors, too!

Duke CS, Fall 2019 18CompSci 516: Database Systems



Keys in a Database

• Key / Candidate Key
• Primary Key
• Super Key
• Foreign Key

• Primary key attributes are underlined in a schema
– Person(pid, address, name)
– Person2(address, name, age, job)

Duke CS, Fall 2019 19CompSci 516: Database Systems



Primary Key Constraints

• A set of fields is a key for a relation if :
1. No two distinct tuples can have same values in all key fields, and
2. This is not true for any subset of the key

• Part 2 false? A superkey

• If there are > 1 keys for a relation, one of the keys is chosen 
(by DBA = DB admin) to be the primary key
– E.g., sid is a key for Students
– The set {sid, gpa} is a superkey.

• Any possible benefit to refer to a tuple using primary key 
(than any key)? 

Duke CS, Fall 2019 20CompSci 516: Database Systems



Primary and Candidate Keys in SQL

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY  ???)

• “For a given student and course, 
there is a single grade.” 

Duke CS, Fall 2019 21

• Possibly many candidate keys
– specified using UNIQUE

– one of which is chosen as the primary key.

CompSci 516: Database Systems



Primary and Candidate Keys in SQL

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY  (sid, cid) )

Duke CS, Fall 2019 22

• Possibly many candidate keys
– specified using UNIQUE

– one of which is chosen as the primary key.

• “For a given student and course, 
there is a single grade.” 

CompSci 516: Database Systems



Primary and Candidate Keys in SQL

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY  (sid, cid) )

• “For a given student and course, there is a 
single grade.” 

• vs. 

• “Students can take only one course, and 
receive a single grade for that course; further, 
no two students in a course receive the same 
grade.”

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY ???,
UNIQUE ??? )

Duke CS, Fall 2019 23

• Possibly many candidate keys
– specified using UNIQUE

– one of which is chosen as the primary key.

CompSci 516: Database Systems



Primary and Candidate Keys in SQL

Duke CS, Fall 2019 24

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY  (sid,cid) )

• “For a given student and course, there is a 
single grade.” 

• vs. 

• “Students can take only one course, and 
receive a single grade for that course; further, 
no two students in a course receive the same 
grade.”

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY sid,
UNIQUE (cid, grade))

• Possibly many candidate keys
– specified using UNIQUE

– one of which is chosen as the primary key.

CompSci 516: Database Systems



Primary and Candidate Keys in SQL

Duke CS, Fall 2019 25

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY  (sid,cid) )

• “For a given student and course, there is a 
single grade.” 

• vs. 

• “Students can take only one course, and 
receive a single grade for that course; further, 
no two students in a course receive the same 
grade.”

• Used carelessly, an IC can prevent the storage 
of database instances that arise in practice!

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY sid,
UNIQUE (cid, grade))

• Possibly many candidate keys
– specified using UNIQUE

– one of which is chosen as the primary key.

CompSci 516: Database Systems



Foreign Keys, Referential Integrity

• Foreign key : Set of fields in one relation that is used to 
`refer’ to a tuple in another relation
– Must correspond to primary key of the second relation
– Like a `logical pointer’

• E.g. sid is a foreign key referring to Students:
– Enrolled(sid: string, cid: string, grade: string)
– If all foreign key constraints are enforced,  referential 

integrity is achieved
– i.e., no dangling references

Duke CS, Fall 2019 26CompSci 516: Database Systems



Foreign Keys in SQL
• Only students listed in the Students relation should be 

allowed to enroll for courses

CREATE TABLE Enrolled
(sid CHAR(20),  cid CHAR(20),  grade CHAR(2),
PRIMARY KEY  (sid,cid),
FOREIGN KEY (sid) REFERENCES Students )

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

sid cid grade
53666 Carnatic101 C
53666 Reggae203 B
53650 Topology112 A
53666 History105 B

Enrolled
Students

Duke CS, Fall 2019 27CompSci 516: Database Systems



Enforcing Referential Integrity
• Consider Students and Enrolled

– sid in Enrolled is a foreign key that references Students.

• What should be done if an Enrolled tuple with a non-existent 
student id is inserted?
– Reject it!

• What should be done if a Students tuple is deleted?
– Three semantics allowed by SQL
1. Also delete all Enrolled tuples that refer to it (cascade delete)
2. Disallow deletion of a Students tuple that is referred to
3. Set sid in Enrolled tuples that refer to it to a default sid
4. (in addition in SQL): Set sid in Enrolled tuples that refer to it to a special 

value null, denoting `unknown’ or `inapplicable’

• Similar if primary key of Students tuple is updated

Duke CS, Fall 2019 28CompSci 516: Database Systems



Referential Integrity in SQL

• SQL/92 and SQL:1999 support 
all 4 options on deletes and 
updates.
– Default is NO ACTION   

(delete/update is 
rejected)

– CASCADE (also delete all 
tuples that refer to 
deleted tuple)

– SET NULL / SET DEFAULT  (sets 
foreign key value of 
referencing tuple)

CREATE TABLE Enrolled
(sid CHAR(20) DEFAULT ‘000’,
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY  (sid,cid),
FOREIGN KEY (sid)
REFERENCES Students
ON DELETE CASCADE
ON UPDATE SET DEFAULT )

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems



Where do ICs Come From?
• ICs are based upon the semantics of the real-world enterprise 

that is being described in the database relations

• Can we infer ICs from an instance?
– We can check a database instance to see if an IC is violated, but we 

can NEVER infer that an IC is true by looking at an instance.
– An IC is a statement about all possible instances!
– From example, we know name is not a key, but the assertion that sid is 

a key is given to us.

Duke CS, Fall 2019 30CompSci 516: Database Systems



Example Instances

• What does the key (sid, bid, day) in 
Reserves mean?

• If the key for the Reserves relation 
contained only the attributes (sid, 
bid), how would the semantics 
differ?

sid sname rating age
22 dustin 7 45
31 lubber 8 55
58 rusty 10 35

sid bid day
22 101 10/10/96
58 103 11/12/96

Reserves

Sailor

Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems



Views
• A view is just a relation, but we store a definition, rather than 

a set of tuples
CREATE  VIEW  YoungActiveStudents (name, grade)

AS SELECT   S.name, E.grade
FROM Students S, Enrolled E
WHERE S.sid = E.sid and S.age<21

• Views can be dropped using the DROP VIEW command

• Views and Security: Views can be used to present necessary information 
(or a summary), while hiding details in underlying relation(s)

• the above view hides courses “cid” from E

Duke CS, Fall 2019 32

Students(sid, name)
Enrolled(sid, cid, grade)

CompSci 516: Database Systems



Can create a new table from a query 
on other tables too

SELECT S.name, E.grade
INTO YoungActiveStudents
FROM Students S, Enrolled E
WHERE S.sid = E.sid and S.age<21

Duke CS, Fall 2019 33

SELECT…  INTO.... FROM.... WHERE

CompSci 516: Database Systems



“WITH” clause – very useful!

• You will find “WITH” clause very useful!
WITH Temp1 AS

(SELECT ….. ..), 
Temp2 AS
(SELECT ….. ..)

SELECT X, Y
FROM TEMP1, TEMP2
WHERE….

• Can simplify complex nested queries

Duke CS, Fall 2019 34CompSci 516: Database Systems



Overview: General Constraints

• Useful when more general ICs 
than keys are involved

• There are also ASSERTIONS to 
specify constraints that span 
across multiple tables

• There are TRIGGERS too : 
procedure that starts 
automatically if specified changes 
occur to the DBMS 

CREATE TABLE   Sailors
( sid  INTEGER,
sname  CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY  (sid),
CHECK ( rating >= 1 

AND rating <= 10 )

CREATE TABLE  Reserves
( sname CHAR(10),
bid  INTEGER,
day  DATE,
PRIMARY KEY  (bid,day),
CONSTRAINT noInterlakeRes
CHECK (`Interlake’ <>

( SELECT B.bname
FROM Boats B
WHERE B.bid=bid)))Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems



Summary: SQL

• SQL has a huge number of constructs and possibilities
– You need to learn and practice it on your own

• Can limit answers using “LIMIT” or “TOP” clauses
– e.g. to output TOP 20 results according to an aggregate
– also can sort using ASC or DESC keywords

• We learnt
– Creating/modifying relations
– Specifying integrity constraints
– Key/candidate key, superkey, primary key, foreign key
– Conceptual evaluation of SQL queries
– Joins
– Group bys and aggregates
– Nested queries 
– NULLs
– Views

Duke CS, Fall 2019 36CompSci 516: Database Systems



Relational Query Languages

Duke CS, Fall 2019 CompSci 516: Database Systems 37



Relational Query Languages

• Query languages:  Allow manipulation and 
retrieval of data from a database

• Relational model supports simple, powerful QLs:
– Strong formal foundation based on logic
– Allows for much optimization

• Query Languages != programming languages
– QLs not intended to be used for complex calculations
– QLs support easy, efficient access to large data sets

Duke CS, Fall 2019 CompSci 516: Database Systems 38



Formal Relational Query Languages

• Two “mathematical” Query Languages form the 
basis for “real” languages (e.g. SQL), and for 
implementation:
– Relational Calculus:   Lets users describe what they 

want, rather than how to compute it  (Non-
operational, declarative, or procedural)

– Relational Algebra:  More operational, very useful 
for representing execution plans

• Note: Declarative (RC, SQL) vs. Operational (RA)

Duke CS, Fall 2019 CompSci 516: Database Systems 39



Relational Calculus (RC)

Please see updated Lecture notes
in Lecture 7

Duke CS, Fall 2019 CompSci 516: Database Systems 40



Relational Algebra (RA)



Relational Algebra

• Takes one or more relations as input, and produces a 
relation as output
– operator
– operand
– semantic
– so an algebra!

• Since each operation returns a relation, operations 
can be composed 
– Algebra is “closed”

Duke CS, Fall 2019 CompSci 516: Database Systems 42



Relational Algebra
• Basic operations:

– Selection   (σ)  Selects a subset of rows from relation
– Projection (π) Deletes unwanted columns from relation.
– Cross-product (x) Allows us to combine two relations.
– Set-difference (-) Tuples in reln. 1, but not in reln. 2.
– Union (∪) Tuples in reln. 1 or in reln. 2.

• Additional operations:
– Intersection (∩)
– join ⨝
– division(/)
– renaming (ρ)  
– Not essential, but (very) useful.

Duke CS, Fall 2019 CompSci 516: Database Systems 43



Example Schema and Instances

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day
22 101 10/10/96
58 103 11/12/96

R1

S1 S2

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)



Projection

sname rating
yuppy 9
lubber 8
guppy 5
rusty 10
p sname rating S, ( )2

age
35.0
55.5

page S( )2

• Deletes attributes that are not in 
projection list.

• Schema of result contains exactly 
the fields in the projection list, with 
the same names that they had in the 
(only) input relation.

• Projection operator has to eliminate 
duplicates  (Why)

– Note: real systems typically don’t do 
duplicate elimination unless the user 
explicitly asks for it (performance)

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S2

10Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems



Selection

s rating S>8 2( )

sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0

• Selects rows that satisfy 
selection condition

• No duplicates in result. 
Why?

• Schema of result identical 
to schema of (only) input 
relation

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S2

11Duke	CS,	Fall	2016 CompSci	516:	Data	Intensive	Computing	Systems



Composition of Operators

• Result relation can be the 
input for another 
relational algebra 
operation  
– Operator composition s rating S>8 2( )

sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0

sname rating
yuppy 9
rusty 10

p ssname rating rating S, ( ( ))
>8 2



Union, Intersection, Set-Difference

• All of these operations take two 
input relations, which must be 
union-compatible:
– Same number of fields.
– `Corresponding’ fields have 

the same type
– same schema as the inputs

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

S S1 2È

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S1 S2

Duke%CS,%Spring%2016 CompSci 516:%Data%Intensive%Computing%Systems 12



Union, Intersection, Set-Difference

• Note: no duplicate
– “Set semantic”
– SQL: UNION
– SQL allows “bag 

semantic” as well: 
UNION ALL

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

S S1 2È

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S1 S2

Duke%CS,%Spring%2016 CompSci 516:%Data%Intensive%Computing%Systems 12



Union, Intersection, Set-Difference

sid sname rating age
31 lubber 8 55.5
58 rusty 10 35.0

S S1 2Ç

sid sname rating age
22 dustin 7 45.0

S S1 2-

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

S1 S2

Duke%CS,%Spring%2016 CompSci 516:%Data%Intensive%Computing%Systems 13



Cross-Product
• Each row of S1 is paired with each row of R.
• Result schema has one field per field of S1 and R, with field 

names `inherited’ if possible.
– Conflict:  Both S1 and R have a field called sid.

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
58 rusty 10 35.0 22 101 10/10/96
58 rusty 10 35.0 58 103 11/12/96

Duke CS, Fall 2019 CompSci 516: Database Systems 51

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid bid day
22 101 10/10/96
58 103 11/12/96



Renaming Operator ⍴

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
58 rusty 10 35.0 22 101 10/10/96
58 rusty 10 35.0 58 103 11/12/96

§In general, can use ⍴(<Temp>, <RA-expression>)

Duke CS, Fall 2019 CompSci 516: Database Systems 52

(⍴sid → sid1 S1) ⨉ (⍴sid → sid1 R1)
or

⍴(C(1→ sid1, 5 → sid2),  S1⨉ R1) 
C is the
new relation
name



Joins

• Result schema same as that of cross-product.
• Fewer tuples than cross-product, might be able to 

compute more efficiently

R c S c R S!" = ´s ( )

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 58 103 11/12/96

S RS sid R sid1 11 1!" . .<

Duke CS, Fall 2019 CompSci 516: Database Systems 53



Find names of sailors who’ve reserved boat 
#103

Duke CS, Fall 2019 CompSci 516: Database Systems 54

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)



Find names of sailors who’ve reserved boat 
#103

• Solution 1: 

• Solution 2:

p ssname bid serves Sailors(( Re ) )=103 !"

p ssname bid serves Sailors( (Re ))
=103 !"

Duke CS, Fall 2019 CompSci 516: Database Systems 55

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)



Expressing an RA expression as a Tree

Duke CS, Fall 2019 CompSci 516: Database Systems 56

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

p ssname bid serves Sailors(( Re ) )=103 !"

Sailors Reserves

σbid=103

⨝sid =sid

πsname

Also called a 
logical query plan



Find sailors who’ve reserved a red or a green boat

• Can identify all red or green boats, then find sailors who’ve reserved one of 
these boats:

r s( , ( ' ' ' ' ))Tempboats color red color green Boats= Ú =

p sname Tempboats serves Sailors( Re )!" !"

Can also define Tempboats using union
Try the “AND” version yourself

Duke CS, Fall 2019 CompSci 516: Database Systems 57

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

Use of rename operation



What about aggregates?

• Extended relational algebra 
• 𝝲age, avg(rating) → avgr Sailors
• Also extended to “bag semantic”: allow duplicates

– Take into account cardinality
– R and S have tuple t resp. m and n times
– R ∪ S has t m+n times
– R ∩ S has t min(m, n) times
– R – S has t max(0, m-n) times
– sorting(τ), duplicate removal (ẟ) operators

Duke CS, Fall 2019 CompSci 516: Database Systems 58

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)


