

Likes(drinker, beer) Frequents(drinker, bar) Serves(bar, beer) Drinker Category 2		
Find drinkers that fi	requent <u>some bar that serves some b</u> eer they lik	e.
{x ∃F ∈ Frequents (F (F.drinker = L.drin	$\begin{array}{l} \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
Find drinkers that fi	requent <u>only bars that serve some b</u> eer they like	
	$\label{eq:cer} \begin{array}{l} \mbox{ser} = x.drinker) \land [\ \forall \ F1 \ \varepsilon \ Frequents \ (F.drinker = F1.drinker) \\ \mbox{ikes} \ [(F1.bar = S.bar) \land (F1.drinker = L.drinker) \land (S.beer = L.$.beer)]]}
		19

BCNF decomposition example - 1

On blackboard

- <u>CSJDPQV</u>, key C, $F = {JP \rightarrow C, SD \rightarrow P, J \rightarrow S}$
- To deal with SD \rightarrow P, decompose into SDP, CSJDQV.
- To deal with J \rightarrow S, decompose CSJDQV into JS and CJDQV
- Is JP → C a violation of BCNF?
- Note:
 - several dependencies may cause violation of BCNF
 - The order in which we pick them may lead to very different sets of relations
- there may be multiple correct decompositions (can pick $J \rightarrow S$ first) Duke (S, Fall 2019 CompSci 516: Database Systems 43

4NF decomposition algorithm

• Find a 4NF violation

•

Duke CS, Fall 2019

- A non-trivial MVD $X \rightarrow Y$ in R where X is not a superkey
- Decompose R into R_1 and R_2 , where
- $-R_1$ has attributes $X \cup Y$
- $-R_2$ has attributes $X \cup Z$ (where Z contains R attributes not in X or Y)

CompSci 516: Database Systems

55

- Repeat until all relations are in 4NF
- Almost identical to BCNF decomposition algorithm
- Any decomposition on a 4NF violation is lossless

