CompSci 516
Database Systems
Lecture 7
Relational Calculus (revisit)
And
Normal Forms

Instructor: Sudeepa Roy

Duke CS, Fall 2019
Compsci 116: Database Systems

Announcements

- HW1 Deadlines!
- Today: parser and Q1-Q3
- Q4: next Tuesday
- Q5 (3 RA questions will be posted today): next Thursday
- 2 late days with penalty apply for individual deadlines
- If you are still parsing XML
- Remember to start early next time from first day
- HW2 and HW3 typically take more time and effort!

[^0]CompSci 516: Database Systems

Today's topic

- Revisit RC
- Finish Normalization
- From Thursday: Database Internals

> Relational Calculus (RC) (Revisit from Lecture 4)

Acknowledgement:
The following slides have been created adapting the
Instructor material of the [RG] book provided by the authors Dr. Magda Balazinska and Dr. Dan Suciu
compSci 156: Dataase Systems

Logic Notations

- \exists There exists
- \forall For all
- ^ Logical AND
- V Logical OR
- \rightarrow NOT
- \Rightarrow Implies

TRC: example

Sailors(sid, sname, rating, age) Boats(bid, bname, color) Reserves(sid, bid, day)

- Find the name and age of all sailors with a rating above 7
\exists There exists
$\{P \mid \exists S \in$ Sailors (S.rating $>7 \wedge$ P.sname $=$ S.sname \wedge P.age $=S$. age $)\}$
- P is a tuple variable
- with exactly two fields sname and age (schema of the output relation)
- P.sname $=S$. sname \wedge P.age $=$ S.age gives values to the fields of an answer tuple
- Use parentheses, $\forall \exists \vee \wedge><=\neq \neg$ etc as necessary
- $A \Rightarrow B$ is very useful too

Duke CS, Fall 2019 Compsci 516: Database Systems

$$
A \Rightarrow B
$$

- A "implies" B
- Equivalently, if A is true, B must be true
- Equivalently, $\neg \mathrm{A} V \mathrm{~B}$, i.e.
- either A is false (then B can be anything)
- otherwise (i.e. A is true) B must be true

Useful Logical Equivalences

- $\forall \mathrm{xP}(\mathrm{x})=-\exists \mathrm{x}[\neg \mathrm{P}(\mathrm{x})]$| \exists | There exists |
| :--- | :--- |
| \forall | For all |
| \hat{A} | Logical AND |
| V | Logical OR |
| - | NOT |
- $\neg(P \vee Q)=\neg P \wedge \neg Q \quad 7$
- $\neg(P \wedge Q)=\neg P \vee \neg Q \int$ de Morgan's laws - Similarly, $\neg(\neg P \vee Q)=P \wedge \neg Q$ etc.
- $A \Rightarrow B=\neg A \vee B$

Duke CS, Fall 2019
Compsci 16: Database Systems

TRC: example

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

- Find the names of sailors who have reserved at least two boats

CompSci 116: Database Systems

TRC: example

$$
\begin{aligned}
& \text { Sailors(sid, sname, rating, age) } \\
& \text { Boats(bid, bname, color) } \\
& \text { Reserves(sid, bid, day) }
\end{aligned}
$$

- Find the names of sailors who have reserved at least two boats
$\{P \mid \exists S \in$ Sailors $(\exists R 1 \in$ Reserves $\exists R 2 \in$ Reserves (S.sid $=$ R1.sid \wedge S.sid $=$ R2.sid \wedge R1.bid \neq R2.bid) \wedge P.sname $=$ S.sname $)\}$

TRC: example

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

- Find the names of sailors who have reserved all boats

TRC: example

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

- Find the names of sailors who have reserved all boats
$\{P \mid \exists S \in$ Sailors $[\forall B \in$ Boats $(\exists R \in$ Reserves ($S . s i d=R . s i d \wedge$ R.bid = B.bid) $)] \wedge($ P.sname $=$ S.sname $)\}$

TRC: example

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

- Find the names of sailors who have reserved all red boats

How will you change the previous TRC expression?

Duke CS, Fall 2019

More Examples: RC

- The famous "Drinker-Beer-Bar" example!

UNDERSTAND THE DIFFERENCE IN ANSWERS FOR ALL FOUR DRINKERS

TRC: example

Sailors(sid, sname, rating, age)
 Boats(bid, bname, color)
 Reserves(sid, bid, day)

- Find the names of sailors who have reserved all red boats
$\{P \mid \exists S \in$ Sailors ($\forall B \in$ Boats (B.color $=$ 'red' $\Rightarrow(\exists R \in$ Reserves
$($ S.sid $=$ R.sid \wedge R.bid $=$ B.bid $))) \wedge$ P.sname $=$ S.sname $)\}$

Recall that $A \Rightarrow B$ is logically equivalent to $\neg A V B$
so \Rightarrow can be avoided, but it is cleaner and more intuitive

Duke C, Fall 2019

Likes(drinker, beer
 Frequents(drinker, bar)

Serves(bar, beer)

Find drinkers that frequent some bar that serves some beer they like
\qquad

Likes(drinker, beer)
Serves(bar, beer)
Drinker Category 1
Find drinkers that frequent some bar that serves some beer they like.

[^1]Senestararbeeen) Drinker Category 2

Find drinkers that frequent some bar that serves some beer they like
$\{x \mid \exists F \in$ Frequents (F.drinker = x.drinker $\wedge \exists \mathrm{S} \in$ Serves $\exists \mathrm{L} \in$ Likes $($ F.drinker $=$ L.drinker $) \wedge($ F.bar $=$ S.bar $) \wedge($ S.beer =L.beer $))\}$
Find drinkers that frequent only bars that serves some beer they like.

Likes(drinker, beer)
 Frequents(drinker, ba
 Serves(bar, beer)
 Drinker Category 2

Find drinkers that frequent some bar that serves some beer they like.
$\{x \mid \exists F \in$ Frequents (F.drinker = x.drinker $\wedge \exists S \in$ Serves \exists L \in Likes (F.drinker = L.drinker) $\wedge($ F.bar $=$ S.bar $) \wedge($ S.beer $=$ L.beer $))\}$

Find drinkers that frequent only bars that serve some beer they like
$\{\mathrm{x} \mid \exists \mathrm{F} \in$ Frequents (F.drinker $=\mathrm{x}$.drinker) $\wedge[\forall \mathrm{F} 1 \in$ Frequents (F. drinker $=\mathrm{F}$ 1.drinker) $\Rightarrow \exists \mathrm{S} \in$ Serves $\exists \mathrm{L} \in$ Likes [(F1.bar $=\mathrm{S}$. bar) $\wedge($ F1.drinker $=$ L.drinker $) \wedge($ S.beer $=L$. beer $)]$]\}

Likes(drinker, beer)
requents(drinker, b
Serves(bar, beer)

Drinker Category 3

Find drinkers that frequent some bar that serves some beer they like.
$\{x \mid \exists F \in$ Frequents (F.drinker = x.drinker $\wedge \exists \mathrm{S} \in$ Serves $\exists \mathrm{L} \in$ Likes $($ F.drinker $=$ L.drinker $) \wedge($ F.bar $=$ S.bar $) \wedge($ S.beer $=$ L.beer $))\}$

Find drinkers that frequent only bars that serve some beer they like
$\{x \mid \exists F \in$ Frequents (F.drinker $=x$.drinker) $\wedge[\forall F 1 \in$ Frequents (F.drinker $=F 1$.drinker) $\Rightarrow \exists \mathrm{S} \in$ Serves $\exists \mathrm{L} \in$ Likes $[(\mathrm{F} 1 . \mathrm{bar}=\mathrm{S}$. bar $) \wedge(\mathrm{F} 1$. drinker $=\mathrm{L}$. drinker $) \wedge(\mathrm{S}$. beer $=\mathrm{L}$. beer $)]]\}$
Find drinkers that frequent some bar that serves only beers they like
$\{\mathrm{x} \mid \exists \mathrm{F} \in$ Frequents (F.drinker $=\mathrm{x}$.drinker) $\wedge[\forall \mathrm{S} \in$ Serves (F.bar $=$ S.bar) \Rightarrow $\exists L \in$ Likes [(F.drinker $=$ L.drinker $) \wedge(S$. beer $=$ L.beer $)]]\}$

Find drinkers that frequent some bar that serves some beer they like $\{x \mid \exists F \in$ Frequents (F.drinker $=x$.drinker $\wedge \exists \mathrm{S} \in$ Serves $\exists \mathrm{L} \in$ Likes F.drinker $=$ L.drinker $) \wedge($ F.bar $=$ S.bar $) \wedge($ S.beer $=$ L.beer $))\}$

Find drinkers that frequent only bars that serve some beer they like. $\{\mathrm{x} \mid \exists \mathrm{F} \in$ Frequents (F.drinker $=\mathrm{x}$. drinker) $\wedge[\forall \mathrm{F} 1 \in$ Frequents (F.drinker $=\mathrm{F} 1$. drinker) $\Rightarrow \exists S \in$ Serves $\exists L \in$ Likes [(F1.bar $=S$. bar $) \wedge(F 1$. drinker $=$ L.drinker $) \wedge($ S.beer $=L$. beer $)]]\}$

Find drinkers that frequent some bar that serves only beers they like

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Drinker Category 4

Find drinkers that frequent some bar that serves some beer they like
$\{x \mid \exists F \in$ Frequents (F.drinker $=x$.drinker $\wedge \exists \mathrm{S} \in$ Serves $\exists \mathrm{L} \in$ Likes
$($ F. drinker $=$ L.drinker $) \wedge($ F.bar $=$ S.bar $) \wedge($ S.beer $=$ L.beer $))\}$
Find drinkers that frequent only bars that serve some beer they like $\{x \mid \exists F \in$ Frequents (F.drinker $=x$.drinker) $\wedge[\forall F 1 \in$ Frequents (F.drinker $=F 1$.drinker) $\Rightarrow \exists S \in$ Serves $\exists L \in$ Likes [(F1.bar $=S$. bar $) \wedge(F 1$.drinker $=$ L.drinker $) \wedge(S$.beer $=L$. beer $)]]\}$

Find drinkers that frequent some bar that serves only beers they like.
$\{\mathrm{x} \mid \exists \mathrm{F} \in$ Frequents (F.drinker $=\mathrm{x}$.drinker) $\wedge[\forall \mathrm{S} \in$ Serves (F.bar $=$ S.bar) \Rightarrow $\exists \mathrm{L} \in$ Likes $[($ F.drinker $=$ L.drinker $) \wedge($ S.beer $=$ L.beer $)]]\}$

Find drinkers that frequent onlv bars that serve onlv beer they like.
\square

Likes(drinker, beer)
requents(drinker, bar)
senes(bararbeet) Drinker Category 4

Find drinkers that frequent some bar that serves some beer they like.

> \{x| \mid F \in Frequents (F.drinker = x.drinker $\wedge \exists \mathrm{S} \in$ Serves $\exists \mathrm{L} \in$ Likes $($ F drinker $=1$ drinker) $\wedge($ F har $=$ Shar) $)$ (S heer $=1$ heer) $($ F.drinker $=$ L.drinker $) \wedge($ F.bar $=$ S.bar $) \wedge($ S.beer $=$ L.beer $))\}$
Find drinkers that frequent only bars that serve some beer they like $\{x \mid \exists F \in$ Frequents (F.drinker $=x$. drinker) $\wedge[\forall F 1 \in$ Frequents (F.drinker $=F 1$. drinker) $\Rightarrow \exists \mathrm{S} \in$ Serves $\exists \mathrm{L} \in \operatorname{Likes}[(\mathrm{F} 1 . \mathrm{bar}=\mathrm{S}$. bar $) \wedge(\mathrm{F} 1$. drinker $=$ L.drinker $) \wedge($ S.beer $=$ L.beer $)]]\}$

Find drinkers that frequent some bar that serves onlv beers they like
$\{x \mid \exists F \in$ Frequents (F.drinker = x.drinker) $\wedge[\forall S \in$ Serves (F.bar $=$ S.bar) \Rightarrow $\exists L \in \operatorname{Likes}[($ F.drinker $=$ L.drinker $) \wedge($ S.beer $=$ L.beer $)]]\}$

Find drinkers that frequent only bars that serve only beer they like. $\{x \mid \exists \mathrm{F} \in$ Frequents $($ F.drinker $=\mathrm{x}$.drinker) $\wedge[\forall \mathrm{F} 1 \in$ Frequents (F.drinker $=\mathrm{F} 1$. drinker) $\Rightarrow[\forall S \in$ Serves ($F 1 . \mathrm{bar}=$ S.bar) \Rightarrow
$\exists \mathrm{L} \in$ Likes [(F.drinker $=$ L.drinker) $\wedge($ S.beer $=$ L.beer $)]$]\}

Why should we care about RC

- RC is declarative, like SQL, and unlike RA (which is operational)
- Gives foundation of database queries in first-order logic
- you cannot express all aggregates in RC, e.g. cardinality of a relation or sum (possible in extended RA and SQL)
- still can express conditions like "at least two tuples" (or any constant)
- RC expression may be much simpler than SQL queries
- and easier to check for correctness than SQL
- power to use \forall and \Rightarrow
- then you can systematically go to a "correct" SQL or RA query

From RC to SQL

Query: Find drinkers that like some beer (so much) that they frequent all bars that serve it
$\{x \mid \exists \mathrm{L} \in$ Likes (L.drinker $=\mathrm{x}$. drinker) $\wedge[\forall \mathrm{S} \in$ Serves (L.beer $=\mathrm{S} . \mathrm{beer}) \Rightarrow$ $\exists \mathrm{F} \in$ Frequents $[($ F.drinker $=$ L.drinker $) \wedge($ S.beer $=$ L.beer $)]]$

Likes(drinker, beer)
 Frequents(drinker, bar)
 Serves(bar, beer)

From RC to SQL (or RA)

Query: Find drinkers that like some beer so much that they frequent all bars that serve it
$\{x \mid \exists \mathrm{L} \epsilon$ Likes (L.drinker $=\mathrm{x}$. drinker) $\wedge[\forall \mathrm{S} \in$ Serves $[($ L. beer $=$ S.beer $) \Rightarrow$ $\exists F \in$ Frequents $[($ F.drinker $=$ L.drinker $) \wedge($ S.beer $=$ L.beer $)]$] $]\}$
$\equiv\{x \mid \exists L \in$ Likes (L.drinker $=x$. drinker) $\wedge[\forall S \in$ Serves $[\neg$ (L.beer $=$ S.beer) $\vee[\exists \mathrm{F} \in$ Frequents [(F.drinker $=$ L.drinker) $\wedge($ S.beer $=$ L.beer $)]]]\}$

Step 1: Replace \forall with \exists using de Morgan's Laws
$\mathrm{Q}(\mathrm{x})=\exists \mathrm{y}$. Likes $(\mathrm{x}, \mathrm{y}) \wedge[\neg \exists \mathrm{S} \in$ Serves [(L.beer = S.beer) $\neg[\exists \mathrm{F} \in$ Frequents [(F.drinker = L.drinker) $\wedge($ S.beer $=$ L.beer $)]$])

Now you got all \exists and \neg expressible in RA/SQL

$$
\begin{aligned}
& \text { Now you got all } \exists \text { and } \neg \text { expressible in RA/SQL } \\
& \text { Compsci } 516: \text { Database Systems } \\
& \text { puke Fsll } 2019
\end{aligned}
$$

$$
P \wedge \rightarrow C
$$

Likes(drinker, beer)
Frequents(drinker, bar
Serves(bar, beer)
From RC to SQL
Query: Find drinkers that like some beer so much that they frequent all bars that serve it
$\mathrm{Q}(\mathrm{x})=\exists \mathrm{y}$. Likes $(\mathrm{x}, \mathrm{y}) \wedge \neg \exists \mathrm{S} \in$ Serves [(L.beer = S.beer) \wedge $\neg[\exists \mathrm{F} \in$ Frequents $[($ F.drinker $=$ L.drinker $) \wedge($ S.beer $=$ L.beer $)])$
Step 2: Translate into SQL
SELECT DISTINCT L.drinker
FROM Likes L
WHERE not exists
(SELECT S.bar
FROM Serves S
WHERE L.beer=S.beer AND not exists (SELECT *

FROM Frequents F
WHERE F.drinker=L.drinker AND F.bar=S.bar))
CompSci 516: Database Systems
We will see a
"methodical and correct"
translation trough
"safe queries"
in Datalog

Database Normalization

Decompositions should be used judiciously

1. Do we need to decompose a relation?

- Several "normal forms" exist to identify possible redundancy at different granularity
- If a relation is not in one of them, may need to decompose further

2. What are the problems with decomposition?

- Bad decompositions: e.g., Lossy decompositions
- Performance issues -- decomposition may both
- help performance (for updates, some queries accessing part of data), or
- hurt performance (new joins may be needed for some queries)

Schema is forcing to store (complex) associations among tuples Nulls may or may not help

Functional Dependencies (FDs)

- A functional dependency (FD) $X \rightarrow Y$ holds over relation R if, for every allowable instance r of R :
- i.e., given two tuples in r, if the X values agree, then the Y values must also agree
- X and Y are sets of attributes
- $t 1 \in r, t 2 \in r, \quad \Pi_{X}(t 1)=\Pi_{X}(t 2)$ implies $\Pi_{Y}(t 1)=\Pi_{Y}(t 2)$

A	B	C	D
a1	b1	c1	d1
a1	b1	c1	d2
a1	b2	c2	d1
a2	b1	c3	d1

What is a (possible) FD here?

Duke CS, Fall 2019
Compsci 516: Database Systems

Functional Dependencies (FDs)

- A functional dependency (FD) $X \rightarrow Y$ holds over relation R if, for every allowable instance r of R :
- i.e., given two tuples in r, if the X values agree, then the Y values must also agree
- X and Y are sets of attributes
- $t 1 \in r, t 2 \in r, \quad \Pi_{X}(t 1)=\Pi_{X}(t 2)$ implies $\Pi_{Y}(t 1)=\Pi_{Y}(t 2)$

A	B	C	D
a1	b1	c1	d1
a1	b1	c1	d2
a1	b2	c2	d1
a2	b1	c3	d1

What is a (possible) FD here?
$A B \rightarrow C$
Note that, $A B$ is not a key

Duke CS, Fall 2019

FD from a key

- Consider a relation $R(A, B, C, D)$ where $A B$ is a key
- Which FD must hold on R?
- $A B \rightarrow A B C D$
- However, $S \rightarrow A B C D$ does not mean S is a key. Why?
- S can be a superkey!
- E.g., $A B C \rightarrow A B C D$ in R, but $A B C$ is not a key

Duke CS, Fall 2019
CompSci 116: Database Systems
Duke CS, Fall 2019
CompSci 516: Database Systems

Closure of a set of FDs

- Given some FDs, we can usually infer additional FDs: - SSN \rightarrow DEPT, and DEPT \rightarrow LOT implies SSN \rightarrow LOT
- An FD f is implied by a set of FDs F if f holds whenever all FDs in F hold
- $\mathrm{F}^{+}=$closure of FDs F is the set of all FDs that are implied by F
- $\mathrm{S}^{+}=$closure of attributes S is the set of all attributes that are implied by S according to F^{+}

Armstrong's Axioms are sound and complete inference rules for FDs

- sound: they only generate FDs in closure F^{+}for F
- complete: by repeated application of these rules, all FDs in F^{+}will be generated

Duke CS, Fall 2019
Compsci 516: Database Systems

Computing Attribute Closure

Algorithm:
Let's do the example first, Then look at the algo yourself

- closure = X

Normal Forms

- Question: given a schema, how to decide whether any schema refinement is needed at all?
- If a relation is in a certain normal forms, it is known that certain kinds of problems are avoided/minimized
- Helps us decide whether decomposing the relation is something we want to do
Does $F=\{A \rightarrow B, B \rightarrow C, C D \rightarrow E\}$ imply

1. $A \rightarrow E$? (i.e, is $A \rightarrow E$ in the closure F^{+}, or E in A^{+}?)
2. $A D \rightarrow E$?

On blackboard
Duke CS, Fall 2019

FDs play a role in detecting redundancy

Example

- Consider a relation R with 3 attributes, ABC
- No FDs hold: There is no redundancy here - no decomposition needed
- Given A \rightarrow B: Several tuples could have the same A value, and if so, they'll all have the same B value \Rightarrow redundancy \Rightarrow decomposition may be needed if A is not a key
- Intuitive idea:
- if there is any non-key dependency, e.g. $A \rightarrow B$, decompose!

Normal Forms

R is in 4NF
$\Rightarrow R$ is in BCNF
$\Rightarrow R$ is in 3NF
$\Rightarrow R$ is in 2NF (a historical one)
$\Rightarrow R$ is in 1 NF (every field has atomic values)

Only BCNF and 4 NF are covered in the class

Duke CS, Fall 2019

BCNF decomposition algorithm

- Find a BCNF violation
- That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super key of R
- Decompose R into R_{1} and R_{2}, where
- R_{1} has attributes $X \cup Y$
- R_{2} has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y
- Repeat until all relations are in BCNF
- Also gives a lossless decomposition!
- Check yourself

Duke CS, Fall 2019
CompSci 516: Database Systems

BCNF decomposition example - 1

On blackboard

- CSJDPQV, key $C, F=\{J P \rightarrow C, S D \rightarrow P, J \rightarrow S\}$
- To deal with SD \rightarrow P, decompose into SDP, CSJDQV.
- To deal with J \rightarrow S, decompose CSJDQV into JS and CJDQV
- Is JP \rightarrow C a violation of BCNF?
- Note
- several dependencies may cause violation of BCNF
- The order in which we pick them may lead to very different sets of relations
- there may be multiple correct decompositions (can pick J \rightarrow S first) Duke CS, Fall 2019

BCNF decomposition example - 2

uid \rightarrow uname, twitterid t witterid \rightarrow uid uid, gid \rightarrow fromDate
UserJoinsGroup (uid, uname, twitterid, gid, fromDate) BCNF violation: uid \rightarrow uname, twitterid

User (uid, uname, twitterid) uid \rightarrow uname, twitterid t witterid \rightarrow uid BCNF

Member (uid, gid, fromDate) uid, gid \rightarrow fromDate BCNF

BCNF = no redundancy?

- User (uid, gid, place)
- A user can belong to multiple groups
- A user can register places she's visited
- Groups and places have nothing to do with other
- FD's?
- None
uid gid place

BCNF?
142 dps Springfield

- Yes
- Redundancies?
- Tons!

142 dps Australi
456 abc Springfield
456 abc Morocco 456 gov Morocca

Duke CS, Fall 2019
CompSci 516: Database Systems 47

MVD examples

User (uid, gid, place)

- uid \rightarrow gid
- uid \rightarrow place
- Intuition: given uid, attributes gid and place are "independent"
- uid, gid \rightarrow place
- Trivial: LHS \cup RHS $=$ all attributes of R
- uid, gid \rightarrow uid
- Trivial: LHS \supseteq RHS

Duke CS, Fall 2019

Proof by chase

- In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

$$
\begin{aligned}
& \text { Have: } \begin{array}{l|l|l|l|}
\boldsymbol{A} & \boldsymbol{B} & \boldsymbol{C} & \boldsymbol{D} \\
\hline \boldsymbol{a} & b_{1} & c_{1} & d_{1}
\end{array} \\
& \begin{array}{llll}
a & b_{1} & c_{1} & d_{1}
\end{array} \\
& a b_{2} c_{2} d_{2}
\end{aligned}
$$

$$
\begin{aligned}
& a b_{1} c_{2} d_{1} \\
& a b_{2} c_{1} d_{2} \text { b } \\
& A \rightarrow B \quad \begin{array}{lllll}
a & b_{2} & c_{1} & d_{1} \\
& a & b_{1} & c_{2} & d_{2}
\end{array} \\
& B \rightarrow C \quad \begin{array}{lllll}
a & b_{2} & c_{1} & d_{2}
\end{array} \\
& B \rightarrow C \begin{array}{l|l|l|l}
a & b_{1} & c_{2} & d_{1} \\
& a & b_{1} & c_{1} \\
\hline
\end{array}
\end{aligned}
$$

Duke CS, Fall 2019

An elegant solution: "chase"

- Given a set of FD's and MVD's \mathcal{D}, does another dependency d (FD or MVD) follow from \mathcal{D} ?
- Procedure
- Start with the premise of d, and treat them as "seed" tuples in a relation
- Apply the given dependencies in \mathcal{D} repeatedly
- If we apply an FD, we infer equality of two symbols
- If we apply an MVD, we infer more tuples
- If we infer the conclusion of d, we have a proof
- Otherwise, if nothing more can be inferred, we have a counterexample
Duke CS, Fall 2019
CompSci 516: Database Systems

Another proof by chase

- In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

$$
\begin{aligned}
& \text { Have: } \begin{array}{l|l|l|l}
\boldsymbol{A} & \boldsymbol{B} & \boldsymbol{C} & \boldsymbol{D} \\
\hline \boldsymbol{a} & b_{1} & c_{1} & d_{1}
\end{array} \quad \text { Need: } \quad c_{1}=c_{2} \text { है } \\
& \text { a } b_{1} c_{1} \\
& a b_{2} c_{2} d_{2} \\
& A \rightarrow B \quad b_{1}=b_{2} \\
& B \rightarrow C \quad c_{1}=c_{2}
\end{aligned}
$$

In general, with both MVD's and FD's, chase can generate both new tuples and new equalities

4NF

- A relation R is in Fourth Normal Form (4NF) if
- For every non-trivial MVD $X \rightarrow Y$ in R, X is a superkey
- That is, all FD's and MVD's follow from "key \rightarrow other attributes" (i.e., no MVD's and no FD's besides key functional dependencies)
- 4NF is stronger than BCNF
- Because every FD is also a MVD

4NF decomposition algorithm

- Find a 4NF violation
- A non-trivial MVD $X \rightarrow Y$ in R where X is not a superkey
- Decompose R into R_{1} and R_{2}, where
$-R_{1}$ has attributes $X \cup Y$
- R_{2} has attributes $X \cup Z$ (where Z contains R attributes not in X or Y)
- Repeat until all relations are in 4NF
- Almost identical to BCNF decomposition algorithm
- Any decomposition on a 4NF violation is lossless

Duke CS, Fall 2019
Compsci 516: Database Systems

Other kinds of dependencies and normal forms

- Dependency preserving decompositions
- Join dependencies
- Inclusion dependencies
- 5NF, 3NF, 2NF
- See book if interested (not covered in class)

4NF decomposition example

- Philosophy behind BCNF, 4NF: Data should depend on the key, the whole key, and nothing but the key!
- You could have multiple keys though
- Redundancy is not desired typically
- not always, mainly due to performance reasons
- Functional/multivalued dependencies - capture redundancy
- Decompositions - eliminate dependencies (should not be lossy!)
- Normal forms
- Guarantees certain non-redundancy
- BCNF, and 4NF
- How to decompose into BCNF, 4NF
- Chase

[^0]: Duke CS, Fall 201

[^1]: $\{x \mid \exists F \in$ Frequents (F.drinker = x.drinker $\wedge \exists S \in$ Serves $\exists L \in$ Likes $($ F.drinker $=$ L.drinker $) \wedge($ F.bar $=$ S.bar $) \wedge($ S.beer $=$ L.beer $))\}$

