
9/17/19

1

CompSci 516
Database Systems

Lecture 7
Relational Calculus (revisit)

And
Normal Forms

Instructor: Sudeepa Roy

1Duke CS, Fall 2019 CompSci 516: Database Systems

Announcements
• HW1 Deadlines!

– Today: parser and Q1-Q3
– Q4: next Tuesday
– Q5 (3 RA questions will be posted today): next

Thursday

• 2 late days with penalty apply for individual
deadlines
– If you are still parsing XML

• Remember to start early next time from first day
• HW2 and HW3 typically take more time and effort!

Duke CS, Fall 2019 2CompSci 516: Database Systems

Today’s topic
• Revisit RC
• Finish Normalization

• From Thursday: Database Internals

Duke CS, Fall 2019 3

Acknowledgement:
The following slides have been created adapting the
instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and Dr. Gehrke, and with the help of slides by
Dr. Magda Balazinska and Dr. Dan Suciu

CompSci 516: Database Systems

Relational Calculus (RC)
(Revisit from Lecture 4)

Duke CS, Fall 2019 CompSci 516: Database Systems 4

Logic Notations

• $ There exists
• " For all
• ∧ Logical AND
• ∨ Logical OR
• ¬ NOT
• ⇒ Implies

TRC: example

• Find the name and age of all sailors with a rating above 7

{P | ∃ S ϵ Sailors (S.rating > 7 ⋀ P.sname = S.sname ⋀ P.age = S.age)}

• P is a tuple variable
– with exactly two fields sname and age (schema of the output relation)
– P.sname = S.sname ⋀ P.age = S.age gives values to the fields of an answer

tuple

• Use parentheses, ∀ ∃ ⋁ ⋀ > < = ≠ ¬ etc as necessary
• A ⇒ B is very useful too

– next slide
Duke CS, Fall 2019 CompSci 516: Database Systems 6

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

$ There exists

9/17/19

2

A ⇒ B

• A “implies” B
• Equivalently, if A is true, B must be true
• Equivalently, ¬ A ⋁ B, i.e.

– either A is false (then B can be anything)
– otherwise (i.e. A is true) B must be true

Duke CS, Fall 2019 CompSci 516: Database Systems 7

Useful Logical Equivalences

• "x P(x) = ¬$x [¬P(x)]

• ¬(P∨Q) = ¬ P∧ ¬ Q
• ¬(P ∧ Q) = ¬ P ∨ ¬ Q

– Similarly, ¬(¬P∨Q) = P∧ ¬ Q etc.

• A Þ B = ¬ A ∨ B

Duke CS, Fall 2019 CompSci 516: Database Systems 8

$ There exists
" For all
∧ Logical AND
∨ Logical OR
¬ NOT

de Morgan’s laws

TRC: example

• Find the names of sailors who have reserved at least two boats

Duke CS, Fall 2019 CompSci 516: Database Systems 9

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

TRC: example

• Find the names of sailors who have reserved at least two boats

{P | ∃ S ϵ Sailors (∃ R1 ϵ Reserves ∃ R2 ϵ Reserves (S.sid = R1.sid
⋀ S.sid = R2.sid ⋀ R1.bid ≠ R2.bid) ⋀ P.sname = S.sname)}

Duke CS, Fall 2019 CompSci 516: Database Systems 10

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

TRC: example

• Find the names of sailors who have reserved all boats

Duke CS, Fall 2019 CompSci 516: Database Systems 11

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

TRC: example

• Find the names of sailors who have reserved all boats

{P | ∃ S ϵ Sailors [∀B ϵ Boats (∃ R ϵ Reserves (S.sid = R.sid⋀
R.bid = B.bid))] ⋀ (P.sname = S.sname)}

Duke CS, Fall 2019 CompSci 516: Database Systems 12

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

9/17/19

3

TRC: example

• Find the names of sailors who have reserved all red boats

Duke CS, Fall 2019 CompSci 516: Database Systems 13

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

How will you change the previous TRC expression?

TRC: example

• Find the names of sailors who have reserved all red boats
{P | ∃ S ϵ Sailors (∀B ϵ Boats (B.color = ‘red’ ⇒ (∃ R ϵ Reserves
(S.sid = R.sid⋀ R.bid = B.bid))) ⋀ P.sname = S.sname)}

Recall that A ⇒B is logically equivalent to ¬ A ⋁ B
so ⇒ can be avoided, but it is cleaner and more intuitive

Duke CS, Fall 2019 CompSci 516: Database Systems 14

Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

More Examples: RC

• The famous “Drinker-Beer-Bar” example!

Duke CS, Fall 2019 CompSci 516: Database Systems 15

UNDERSTAND THE DIFFERENCE IN ANSWERS
FOR ALL FOUR DRINKERS

Drinker Category 1
Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

16

Find drinkers that frequent some bar that serves some beer they like.

…

Drinker Category 1
Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

17

Find drinkers that frequent some bar that serves some beer they like.

{x | $F ϵ Frequents (F.drinker = x.drinker ∧ $ S ϵ Serves $ L ϵ Likes
(F.drinker = L.drinker) ∧ (F.bar = S.bar) ∧ (S.beer =L.beer))}

Drinker Category 2
Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

18

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

{x | $F ϵ Frequents (F.drinker = x.drinker ∧ $ S ϵ Serves $ L ϵ Likes
(F.drinker = L.drinker) ∧ (F.bar = S.bar) ∧ (S.beer =L.beer))}

…

Free HW question hint!

9/17/19

4

Drinker Category 2
Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

19

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serve some beer they like.

{x | $F ϵ Frequents (F.drinker = x.drinker ∧ $ S ϵ Serves $ L ϵ Likes
(F.drinker = L.drinker) ∧ (F.bar = S.bar) ∧ (S.beer =L.beer))}

{x | $F ϵ Frequents (F.drinker = x.drinker) ∧ [" F1 ϵ Frequents (F.drinker = F1.drinker)
Þ $ S ϵ Serves $ L ϵ Likes [(F1.bar = S.bar) ∧ (F1.drinker = L.drinker) ∧ (S.beer =L.beer)]]}

Drinker Category 3

Find drinkers that frequent some bar that serves only beers they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

20

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serve some beer they like.

{x | $F ϵ Frequents (F.drinker = x.drinker ∧ $ S ϵ Serves $ L ϵ Likes
(F.drinker = L.drinker) ∧ (F.bar = S.bar) ∧ (S.beer =L.beer))}

{x | $F ϵ Frequents (F.drinker = x.drinker) ∧ [" F1 ϵ Frequents (F.drinker = F1.drinker)
Þ $ S ϵ Serves $ L ϵ Likes [(F1.bar = S.bar) ∧ (F1.drinker = L.drinker) ∧ (S.beer =L.beer)]]}

…

Drinker Category 3

Find drinkers that frequent some bar that serves only beers they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

21

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serve some beer they like.

{x | $F ϵ Frequents (F.drinker = x.drinker ∧ $ S ϵ Serves $ L ϵ Likes
(F.drinker = L.drinker) ∧ (F.bar = S.bar) ∧ (S.beer =L.beer))}

{x | $F ϵ Frequents (F.drinker = x.drinker) ∧ [" F1 ϵ Frequents (F.drinker = F1.drinker)
Þ $ S ϵ Serves $ L ϵ Likes [(F1.bar = S.bar) ∧ (F1.drinker = L.drinker) ∧ (S.beer =L.beer)]]}

{x | $F ϵ Frequents (F.drinker = x.drinker) ∧ [" S ϵ Serves (F.bar = S.bar) Þ
$ L ϵ Likes [(F.drinker = L.drinker) ∧ (S.beer =L.beer)]]}

Drinker Category 4

Find drinkers that frequent some bar that serves only beers they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

22

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serve some beer they like.

{x | $F ϵ Frequents (F.drinker = x.drinker ∧ $ S ϵ Serves $ L ϵ Likes
(F.drinker = L.drinker) ∧ (F.bar = S.bar) ∧ (S.beer =L.beer))}

{x | $F ϵ Frequents (F.drinker = x.drinker) ∧ [" F1 ϵ Frequents (F.drinker = F1.drinker)
Þ $ S ϵ Serves $ L ϵ Likes [(F1.bar = S.bar) ∧ (F1.drinker = L.drinker) ∧ (S.beer =L.beer)]]}

{x | $F ϵ Frequents (F.drinker = x.drinker) ∧ [" S ϵ Serves (F.bar = S.bar) Þ
$ L ϵ Likes [(F.drinker = L.drinker) ∧ (S.beer =L.beer)]]}

Find drinkers that frequent only bars that serve only beer they like.
…

Drinker Category 4

Find drinkers that frequent some bar that serves only beers they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

23

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serve some beer they like.

{x | $F ϵ Frequents (F.drinker = x.drinker ∧ $ S ϵ Serves $ L ϵ Likes
(F.drinker = L.drinker) ∧ (F.bar = S.bar) ∧ (S.beer =L.beer))}

{x | $F ϵ Frequents (F.drinker = x.drinker) ∧ [" F1 ϵ Frequents (F.drinker = F1.drinker)
Þ $ S ϵ Serves $ L ϵ Likes [(F1.bar = S.bar) ∧ (F1.drinker = L.drinker) ∧ (S.beer =L.beer)]]}

{x | $F ϵ Frequents (F.drinker = x.drinker) ∧ [" S ϵ Serves (F.bar = S.bar) Þ
$ L ϵ Likes [(F.drinker = L.drinker) ∧ (S.beer =L.beer)]]}

Find drinkers that frequent only bars that serve only beer they like.
{x | $F ϵ Frequents (F.drinker = x.drinker) ∧ [" F1 ϵ Frequents (F.drinker = F1.drinker)

Þ [" S ϵ Serves (F1.bar = S.bar) Þ
$ L ϵ Likes [(F.drinker = L.drinker) ∧ (S.beer =L.beer)]]}

Why should we care about RC
• RC is declarative, like SQL, and unlike RA (which is

operational)
• Gives foundation of database queries in first-order

logic
– you cannot express all aggregates in RC, e.g. cardinality of

a relation or sum (possible in extended RA and SQL)
– still can express conditions like “at least two tuples” (or any

constant)
• RC expression may be much simpler than SQL queries

– and easier to check for correctness than SQL
– power to use " and Þ
– then you can systematically go to a “correct” SQL or

RA query

Duke CS, Fall 2019 CompSci 516: Database Systems 24

9/17/19

5

From RC to SQL
Query: Find drinkers that like some beer (so much) that

they frequent all bars that serve it

CompSci 516: Database Systems 25

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Duke CS, Fall 2019

{x | $ L ϵ Likes (L.drinker = x.drinker) ∧ [" S ϵ Serves (L.beer = S.beer) Þ
$ F ϵ Frequents [(F.drinker = L.drinker) ∧ (S.beer =L.beer)]]}

Drinker category 5!

From RC to SQL (or RA)
Query: Find drinkers that like some beer so much that

they frequent all bars that serve it

Step 1: Replace " with $ using de Morgan’s Laws

Q(x) = $y. Likes(x, y)∧ [¬$ S ϵ Serves [(L.beer = S.beer) ∧
¬ [$ F ϵ Frequents [(F.drinker = L.drinker) ∧ (S.beer =L.beer)]])

CompSci 516: Database Systems 26

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

"x P(x) same as
¬$x ¬P(x)

¬(¬P∨Q) same as
P∧ ¬ Q

º {x | $ L ϵ Likes (L.drinker = x.drinker) ∧ [" S ϵ Serves [¬ (L.beer =
S.beer) ∨ [$ F ϵ Frequents [(F.drinker = L.drinker) ∧ (S.beer =L.beer)]]]}

Duke CS, Fall 2019

{x | $ L ϵ Likes (L.drinker = x.drinker) ∧ [" S ϵ Serves [(L.beer = S.beer) Þ
$ F ϵ Frequents [(F.drinker = L.drinker) ∧ (S.beer =L.beer)]]]}

SQL or RA does not have "!
Now you got all $ and ¬ expressible in RA/SQL

From RC to SQL

SELECT DISTINCT L.drinker
FROM Likes L
WHERE not exists

(SELECT S.bar
FROM Serves S
WHERE L.beer=S.beer

AND not exists (SELECT *
FROM Frequents F
WHERE F.drinker=L.drinker

AND F.bar=S.bar))

CompSci 516: Database Systems 27

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Duke CS, Fall 2019

Step 2: Translate into SQL

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it

We will see a
“methodical and correct”
translation trough
“safe queries”
in Datalog

Q(x) = $y. Likes(x, y) ∧ ¬$ S ϵ Serves [(L.beer = S.beer) ∧
¬ [$ F ϵ Frequents [(F.drinker = L.drinker) ∧ (S.beer =L.beer)])

Database Normalization

Duke CS, Fall 2019 CompSci 516: Database Systems 29

1. Redundant storage
2. Update anomalies
3. Insertion anomalies

4. Deletion anomalies

Schema is forcing to store (complex) associations among tuples
Nulls may or may not help

Recap from Lecture-5
ssn (S) name (N) lot

(L)
rating
(R)

hourly-
wage (W)

hours-
worked (H)

111-11-1111 Attishoo 48 8 10 40
222-22-2222 Smiley 22 8 10 30
333-33-3333 Smethurst 35 5 7 30
444-44-4444 Guldu 35 5 7 32
555-55-5555 Madayan 35 8 10 40

Redundancy is bad!
(well…not always?)

Solution: Decomposition!

Be careful about “Lossy decomposition”!
(on blackboard)

Decompositions should be used judiciously

1. Do we need to decompose a relation?
– Several “normal forms” exist to identify possible redundancy at

different granularity

– If a relation is not in one of them, may need to decompose further

2. What are the problems with decomposition?
– Bad decompositions: e.g., Lossy decompositions
– Performance issues -- decomposition may both

• help performance (for updates, some queries accessing part of data), or
• hurt performance (new joins may be needed for some queries)

Duke CS, Fall 2019 CompSci 516: Database Systems 30

9/17/19

6

Functional Dependencies (FDs)
• A functional dependency (FD) X → Y holds over relation R if, for

every allowable instance r of R:
– i.e., given two tuples in r, if the X values agree, then the Y values must also

agree
– X and Y are sets of attributes
– t1 ϵ r, t2 ϵ r, ΠX (t1) = ΠX (t2) implies ΠY (t1) = ΠY (t2)

Duke CS, Fall 2019 CompSci 516: Database Systems 31

A B C D
a1 b1 c1 d1
a1 b1 c1 d2
a1 b2 c2 d1
a2 b1 c3 d1

What is a (possible) FD here?

Functional Dependencies (FDs)
• A functional dependency (FD) X → Y holds over relation R if, for

every allowable instance r of R:
– i.e., given two tuples in r, if the X values agree, then the Y values must also

agree
– X and Y are sets of attributes
– t1 ϵ r, t2 ϵ r, ΠX (t1) = ΠX (t2) implies ΠY (t1) = ΠY (t2)

Duke CS, Fall 2019 CompSci 516: Database Systems 32

A B C D
a1 b1 c1 d1
a1 b1 c1 d2
a1 b2 c2 d1
a2 b1 c3 d1

What is a (possible) FD here?

AB → C

Note that, AB is not a key

Can we detect FDs from an instance?

• An FD is a statement about all allowable relation instances
– Must be identified based on semantics of application
– Given some allowable instance r1 of R, we can check if it violates some FD

f, but we cannot tell if f holds over R

• K is a candidate key for R means that K →R
– denoting R = all attributes of R too
– However, S →R does not require S to be minimal
– e.g. S can be a superkey

Duke CS, Fall 2019 CompSci 516: Database Systems 33

FD from a key

• Consider a relation R(A,B, C, D) where AB is a key
• Which FD must hold on R?

• AB → ABCD

• However, S → ABCD does not mean S is a key. Why?
– S can be a superkey!
– E.g., ABC → ABCD in R, but ABC is not a key

Duke CS, Fall 2019 CompSci 516: Database Systems 34

Armstrong’s Axioms

Duke CS, Fall 2019 CompSci 516: Database Systems 35

• X, Y, Z are sets of attributes

1. Reflexivity: If X ⊇ Y, then X → Y, e.g., ABC → AB

2. Augmentation: If X → Y, then XZ → YZ for any Z,
– e.g., AB → C ⇒ABDE → CDE

3. Transitivity: If X → Y and Y → Z, then X → Z
– e.g., AB → C and C → D ⇒AB → D

A B C D
a1 b1 c1 d1
a1 b1 c1 d2
a1 b2 c2 d1
a2 b1 c3 d1

Apply these rules on
AB → C and check

• Additional rules that follow from Armstrong’s Axioms

4. Union: If X → Y and X → Z, then X → YZ
5. Decomposition: If X → YZ, then X → Y and X → Z

A → B and A → C
⇒A → BC

A → BC
⇒A → B, A → C

Closure of a set of FDs

• Given some FDs, we can usually infer additional FDs:
– SSN → DEPT, and DEPT → LOT implies SSN → LOT

• An FD f is implied by a set of FDs F if f holds whenever all FDs in F
hold.

• F+ = closure of FDs F is the set of all FDs that are implied by F
• S+ = closure of attributes S is the set of all attributes that are implied

by S according to F+

Duke CS, Fall 2019 CompSci 516: Database Systems 36

Armstrong’s Axioms are sound and complete inference rules for FDs
– sound: they only generate FDs in closure F+ for F
– complete: by repeated application of these rules, all FDs in F+ will be

generated

9/17/19

7

Computing Attribute Closure

Algorithm:
• closure = X
• Repeat until no change

– if there is an FD U → V in F such that U ⊆
closure, then closure = closure ∪ V

Duke CS, Fall 2019 CompSci 516: Database Systems 37

Does F = {A → B, B → C, C D → E } imply
1. A → E? (i.e, is A → E in the closure F+ , or E in A+?)
2. AD → E?

On blackboard

Let’s do the example first,
Then look at the algo
yourself

Normal Forms

• Question: given a schema, how to decide whether any schema
refinement is needed at all?

• If a relation is in a certain normal forms, it is known that
certain kinds of problems are avoided/minimized

• Helps us decide whether decomposing the relation is
something we want to do

Duke CS, Fall 2019 CompSci 516: Database Systems 38

FDs play a role in detecting redundancy

Example
• Consider a relation R with 3 attributes, ABC

– No FDs hold: There is no redundancy here – no decomposition
needed

– Given A → B: Several tuples could have the same A value, and
if so, they’ll all have the same B value ⇒ redundancy ⇒
decomposition may be needed if A is not a key

• Intuitive idea:
– if there is any non-key dependency, e.g. A → B,

decompose!

Duke CS, Fall 2019 CompSci 516: Database Systems 39

Normal Forms

R is in 4NF
⇒R is in BCNF
⇒R is in 3NF
⇒R is in 2NF (a historical one)
⇒R is in 1NF (every field has atomic
values)

Duke CS, Fall 2019 CompSci 516: Database Systems 40

BCNF

3NF

2NF

1NF

Only BCNF and 4NF are covered in the class

4NF

Boyce-Codd Normal Form (BCNF)

• Relation R with FDs F is in BCNF if, for all X →
A in F
– A ϵ X (called a trivial FD), or
– X contains a key for R

• i.e. X is a superkey

Duke CS, Fall 2019 CompSci 516: Database Systems 41

BCNF decomposition algorithm

• Find a BCNF violation
– That is, a non-trivial FD 𝑋 → 𝑌 in 𝑅 where 𝑋 is not a super key of
𝑅

• Decompose 𝑅 into 𝑅/ and 𝑅0, where
– 𝑅/ has attributes 𝑋 ∪ 𝑌
– 𝑅0 has attributes 𝑋 ∪ 𝑍, where 𝑍 contains all attributes of 𝑅

that are in neither 𝑋 nor 𝑌
• Repeat until all relations are in BCNF

• Also gives a lossless decomposition!
– Check yourself

42Duke CS, Fall 2019 CompSci 516: Database Systems

9/17/19

8

BCNF decomposition example - 1

• CSJDPQV, key C, F = {JP → C, SD → P, J → S}
– To deal with SD → P, decompose into SDP, CSJDQV.
– To deal with J → S, decompose CSJDQV into JS and CJDQV

• Is JP → C a violation of BCNF?

• Note:
– several dependencies may cause violation of BCNF
– The order in which we pick them may lead to very different sets of

relations
– there may be multiple correct decompositions (can pick J → S first)

Duke CS, Fall 2019 CompSci 516: Database Systems 43

On blackboard

BCNF decomposition example - 2

44

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

uid→ uname, twitterid
twitterid→ uid
uid, gid→ fromDate

BCNF violation: uid→ uname, twitterid

User (uid, uname, twitterid) Member (uid, gid, fromDate)

BCNF
BCNF

uid→ uname, twitterid
twitterid→ uid

uid, gid→ fromDate

Duke CS, Fall 2019 CompSci 516: Database Systems

45

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

uid→ uname, twitterid
twitterid→ uid
uid, gid→ fromDate

BCNF violation: twitterid→ uid

UserId (twitterid, uid)

Member (twitterid, gid, fromDate)

BCNF

BCNF

twitterid→ uname
twitterid, gid→ fromDate

UserJoinsGroup’ (twitterid, uname, gid, fromDate)

BCNF violation: twitterid→ uname

UserName (twitterid, uname)
BCNF

apply Armstrong’s
axioms and rules!

Duke CS, Fall 2019 CompSci 516: Database Systems

BCNF decomposition example - 3
It is not enough to only look at given FDs! You need to
Consider the closure!

Recap

• Functional dependencies: a generalization of the key
concept

• Non-key functional dependencies: a source of
redundancy

• BCNF decomposition: a method for removing
redundancies
– BCNF decomposition is a lossless join decomposition

• BCNF: schema in this normal form has no
redundancy due to FD’s

46Duke CS, Fall 2019 CompSci 516: Database Systems

BCNF = no redundancy?

• User (uid, gid, place)
– A user can belong to multiple groups
– A user can register places she’s visited
– Groups and places have nothing to do with other
– FD’s?

• None

– BCNF?
• Yes

– Redundancies?
• Tons!

47

uid gid place

142 dps Springfield

142 dps Australia

456 abc Springfield

456 abc Morocco

456 gov Springfield

456 gov Morocco

… … …

Duke CS, Fall 2019 CompSci 516: Database Systems

Multivalued dependencies

• A multivalued dependency (MVD) has the form
𝑋 ↠𝑌, where 𝑋 and 𝑌 are sets of attributes in a relation 𝑅

• 𝑋 ↠𝑌means that whenever
two rows in 𝑅 agree on all the
attributes of 𝑋, then we can
swap their 𝑌 components and
get two rows that are also in 𝑅

48

𝑿 𝒀 𝒁
𝑎 𝑏/ 𝑐/
𝑎 𝑏0 𝑐0

… … …

𝑿 𝒀 𝒁
𝑎 𝑏/ 𝑐/
𝑎 𝑏0 𝑐0
𝑎 𝑏0 𝑐/
𝑎 𝑏/ 𝑐0

… … …

Duke CS, Fall 2019 CompSci 516: Database Systems

9/17/19

9

MVD examples

User (uid, gid, place)
• uid↠ gid
• uid↠ place

– Intuition: given uid, attributes gid and place are
“independent”

• uid, gid↠ place
– Trivial: LHS ∪ RHS = all attributes of 𝑅

• uid, gid↠ uid
– Trivial: LHS ⊇RHS

49Duke CS, Fall 2019 CompSci 516: Database Systems

An elegant solution: “chase”

• Given a set of FD’s and MVD’s 𝒟, does another
dependency 𝑑 (FD or MVD) follow from 𝒟?

• Procedure
– Start with the premise of 𝑑, and treat them as “seed”

tuples in a relation
– Apply the given dependencies in 𝒟 repeatedly

• If we apply an FD, we infer equality of two symbols
• If we apply an MVD, we infer more tuples

– If we infer the conclusion of 𝑑, we have a proof
– Otherwise, if nothing more can be inferred, we have a

counterexample
50

Read this slide after looking at the examples

Duke CS, Fall 2019 CompSci 516: Database Systems

Proof by chase
• In 𝑅 𝐴, 𝐵, 𝐶, 𝐷 , does 𝐴 ↠ 𝐵 and 𝐵 ↠ 𝐶

imply that 𝐴 ↠ 𝐶?

51

𝑨 𝑩 𝑪 𝑫
𝑎 𝑏/ 𝑐/ 𝑑/
𝑎 𝑏0 𝑐0 𝑑0

𝑨 𝑩 𝑪 𝑫
𝑎 𝑏/ 𝑐0 𝑑/
𝑎 𝑏0 𝑐/ 𝑑0

Have: Need:

𝑎 𝑏0 𝑐/ 𝑑/
𝑎 𝑏/ 𝑐0 𝑑0

𝐴 ↠𝐵

𝑎 𝑏0 𝑐/ 𝑑0
𝑎 𝑏0 𝑐0 𝑑/

𝐵 ↠ 𝐶

𝑎 𝑏/ 𝑐0 𝑑/
𝑎 𝑏/ 𝑐/ 𝑑0

𝐵 ↠ 𝐶

A
A

Duke CS, Fall 2019 CompSci 516: Database Systems

Another proof by chase
• In 𝑅 𝐴, 𝐵, 𝐶, 𝐷 , does 𝐴 → 𝐵 and 𝐵 → 𝐶 imply

that 𝐴 → 𝐶?

52

𝑨 𝑩 𝑪 𝑫
𝑎 𝑏/ 𝑐/ 𝑑/
𝑎 𝑏0 𝑐0 𝑑0

Have: Need:
𝑐/ = 𝑐0

𝐴 → 𝐵 𝑏/ = 𝑏0
𝐵 → 𝐶 𝑐/ = 𝑐0

A

In general, with both MVD’s and FD’s,
chase can generate both new tuples and new equalities

Duke CS, Fall 2019 CompSci 516: Database Systems

Counterexample by chase
• In 𝑅 𝐴, 𝐵, 𝐶, 𝐷 , does 𝐴 ↠ 𝐵𝐶 and 𝐶𝐷 → 𝐵

imply that 𝐴 → 𝐵?

53

𝑨 𝑩 𝑪 𝑫
𝑎 𝑏/ 𝑐/ 𝑑/
𝑎 𝑏0 𝑐0 𝑑0

Have: Need:
𝑏/ = 𝑏0

𝑎 𝑏0 𝑐0 𝑑/
𝑎 𝑏/ 𝑐/ 𝑑0

𝐴 ↠𝐵𝐶

D

Counterexample!

Duke CS, Fall 2019 CompSci 516: Database Systems

4NF

• A relation 𝑅 is in Fourth Normal Form (4NF) if
– For every non-trivial MVD 𝑋 ↠ 𝑌 in 𝑅, 𝑋 is a

superkey
– That is, all FD’s and MVD’s follow from “key →

other attributes” (i.e., no MVD’s and no FD’s
besides key functional dependencies)

• 4NF is stronger than BCNF
– Because every FD is also a MVD

54Duke CS, Fall 2019 CompSci 516: Database Systems

9/17/19

10

4NF decomposition algorithm

• Find a 4NF violation
– A non-trivial MVD 𝑋 ↠𝑌 in 𝑅where 𝑋 is not a superkey

• Decompose 𝑅 into 𝑅/ and 𝑅0, where
– 𝑅/ has attributes 𝑋∪𝑌
– 𝑅0 has attributes 𝑋∪𝑍 (where 𝑍 contains 𝑅 attributes not

in 𝑋 or 𝑌)
• Repeat until all relations are in 4NF

• Almost identical to BCNF decomposition algorithm
• Any decomposition on a 4NF violation is lossless

55Duke CS, Fall 2019 CompSci 516: Database Systems

4NF decomposition example

56

uid gid place

142 dps Springfield

142 dps Australia

456 abc Springfield

456 abc Morocco

456 gov Springfield

456 gov Morocco

… … …

User (uid, gid, place)
4NF violation: uid↠gid

Member (uid, gid) Visited (uid, place)
4NF 4NFuid gid

142 dps

456 abc

456 gov

… …

uid place

142 Springfield

142 Australia

456 Springfield

456 Morocco

… …

Duke CS, Fall 2019 CompSci 516: Database Systems

Other kinds of dependencies and
normal forms

• Dependency preserving decompositions
• Join dependencies
• Inclusion dependencies
• 5NF, 3NF, 2NF
• See book if interested (not covered in class)

Duke CS, Fall 2019 CompSci 516: Database Systems 57

Summary

• Philosophy behind BCNF, 4NF:
Data should depend on the key,
the whole key,
and nothing but the key!
– You could have multiple keys though

• Redundancy is not desired typically
– not always, mainly due to performance reasons

• Functional/multivalued dependencies – capture redundancy
• Decompositions – eliminate dependencies (should not be lossy!)
• Normal forms

– Guarantees certain non-redundancy
– BCNF, and 4NF

• How to decompose into BCNF, 4NF
• Chase

58Duke CS, Fall 2019 CompSci 516: Database Systems

