
9/19/19

1

CompSci 516
Database Systems

Lecture 8
Normalization

Storage
Index

Instructor: Sudeepa Roy

1Duke CS, Fall 2019 CompSci 516: Database Systems

Announcements
• HW1 Deadlines!

– Today: parser and Q1-Q3 (last late day!)
– Q4: next Tuesday 09/24
– Q5 (RA questions posted on Sakai): next to next

Tuesday 10/01
• Check Piazza for submission instructions

• 2 late days with penalty apply for individual
deadlines
– It is important to start HWs from day-1!

Duke CS, Fall 2019 2CompSci 516: Database Systems

Today’s topic
• Finish Normalization

• New topic: Database Internals

Duke CS, Fall 2019 3

Acknowledgement:
The following slides have been created adapting the
instructor material of the [RG] book provided by the authors
Dr. Ramakrishnan and Dr. Gehrke, and with the help of slides by
Dr. Magda Balazinska and Dr. Dan Suciu

CompSci 516: Database Systems

Recap: Functional Dependencies (FDs)

Duke CS, Fall 2019 CompSci 516: Database Systems 4

A B C D
a1 b1 c1 d1
a1 b1 c1 d2
a1 b2 c2 d1
a2 b1 c3 d1

AB → C
ABD → C
AB → A (trivial)

But not

AB → D
A → D
A → C

Normal Forms

R is in 4NF
⇒R is in BCNF
⇒R is in 3NF
⇒R is in 2NF (a historical one)
⇒R is in 1NF (every field has atomic
values)

Duke CS, Fall 2019 CompSci 516: Database Systems 5

BCNF

3NF

2NF

1NF

Only BCNF and 4NF are covered in the class

4NF

Boyce-Codd Normal Form (BCNF)

• Relation R with FDs F is in BCNF

• if, for all X → A in F
– A ϵ X (called a trivial FD), or
– X contains a key for R

• i.e. X is a superkey

Duke CS, Fall 2019 CompSci 516: Database Systems 6

No dependencies other than from superkeys can exist!

9/19/19

2

BCNF decomposition algorithm

1. Find a BCNF violation
– That is, a non-trivial FD 𝑋 → 𝑌 in 𝑅 where 𝑋 is not a super key of
𝑅

2. Decompose 𝑅 into 𝑅& and 𝑅', where
– 𝑅& has attributes 𝑋 ∪ 𝑌
– 𝑅' has attributes 𝑋 ∪ 𝑍, where 𝑍 contains all attributes of 𝑅

that are in neither 𝑋 nor 𝑌
3. Repeat until all relations are in BCNF

• Also gives a lossless decomposition!
– Check yourself

7Duke CS, Fall 2019 CompSci 516: Database Systems

BCNF decomposition example - 1

• CSJDPQV, key C, F = {JP → C, SD → P, J → S}
– To deal with SD → P, decompose into SDP, CSJDQV.
– To deal with J → S, decompose CSJDQV into JS and CJDQV

• Is JP → C a violation of BCNF?

• Note:
– several dependencies may cause violation of BCNF
– The order in which we pick them may lead to very different sets of

relations
– there may be multiple correct decompositions (can pick J → S first)

Duke CS, Fall 2019 CompSci 516: Database Systems 8

On blackboard

BCNF decomposition example - 2

9

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

uid→ uname, twitterid
twitterid→ uid
uid, gid→ fromDate

BCNF violation: uid→ uname, twitterid

User (uid, uname, twitterid) Member (uid, gid, fromDate)

BCNF
BCNF

uid→ uname, twitterid
twitterid→ uid

uid, gid→ fromDate

Duke CS, Fall 2019 CompSci 516: Database Systems 10

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

uid→ uname, twitterid
twitterid→ uid
uid, gid→ fromDate

BCNF violation: twitterid→ uid

UserId (twitterid, uid)

Member (twitterid, gid, fromDate)

BCNF

BCNF

twitterid→ uname
twitterid, gid→ fromDate

UserJoinsGroup’ (twitterid, uname, gid, fromDate)

BCNF violation: twitterid→ uname

UserName (twitterid, uname)
BCNF

apply Armstrong’s
axioms and rules!

Duke CS, Fall 2019 CompSci 516: Database Systems

BCNF decomposition example - 3
It is not enough to only look at given FDs! You need to
Consider the closure!

Recap

• Functional dependencies: a generalization of the key
concept

• Non-key functional dependencies: a source of
redundancy

• BCNF decomposition: a method for removing
redundancies
– And gives lossless join decomposition

• BCNF = no redundancy due to FDs

11Duke CS, Fall 2019 CompSci 516: Database Systems

But - the relation may still have redundancies! 4-NF (later)

Where are we now?

We learnt How to write queries and how to design a
ü Relational Model and Query Languages

ü SQL, RA, RC
ü Postgres (DBMS)
ü XML (overview)
§ HW1

ü Database Normalization

Next
• DBMS Internals

– Storage
– Indexing
– Query Evaluation
– Operator Algorithms
– External sort
– Query Optimization

Duke CS, Fall 2019 CompSci 516: Database Systems 12

9/19/19

3

Storage

Duke CS, Fall 2019 CompSci 516: Database Systems 13

DBMS Architecture

Duke CS, Fall 2019 CompSci 516: Database Systems 14

• A typical DBMS has a layered
architecture

• The figure does not show the
concurrency control and
recovery components

– to be done in “transactions”

• This is one of several possible
architectures

– each system has its own variations

Query Parsing,
Optimization,
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

These layers
must consider
concurrency
control and
recovery

Data on External Storage
• Data must persist on disk across program executions in a

DBMS
– Data is huge
– Must persist across executions
– But has to be fetched into main memory when DBMS processes the

data

• The unit of information for reading data from disk, or writing
data to disk, is a page

• Disks: Can retrieve random page at fixed cost
– But reading several consecutive pages is much cheaper than reading

them in random order

Duke CS, Fall 2019 CompSci 516: Database Systems 15

Disk Space Management
• Lowest layer of DBMS software manages space on disk

• Higher levels call upon this layer to:
– allocate/de-allocate a page
– read/write a page

• Size of a page = size of a disk block
= data unit

• Request for a sequence of pages often satisfied by allocating
contiguous blocks on disk

• Space on disk managed by Disk-space Manager
– Higher levels don’t need to know how this is done, or how free space

is managed

Duke CS, Fall 2019 CompSci 516: Database Systems 16

Buffer Management

Suppose
• 1 million pages in db, but only space for 1000 in memory
• A query needs to scan the entire file
• DBMS has to

– bring pages into main memory
– decide which existing pages to replace to make room for a new

page
– called Replacement Policy

• Managed by the Buffer manager
– Files and access methods ask the buffer manager to access a

page mentioning the “record id” (soon)
– Buffer manager loads the page if not already there

Duke CS, Fall 2019 CompSci 516: Database Systems 17

Buffer Management

• Data must be in RAM for DBMS to operate on it
• Table of <frame#, pageid> pairs is maintained

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

Duke CS, Fall 2019 CompSci 516: Database Systems 18

Buffer pool = main memory is partitioned into frames
either contains a page from disk or is a free frame

9/19/19

4

When a Page is Requested ...
For every frame, store
• a dirty bit:

– whether the page in the frame has been modified since it has been
brought to memory

– initially 0 or off

• a pin-count:
– the number of times the page in the frame has been requested but

not released (and no. of current users)
– initially 0
– when a page is requested, the count in incremented
– when the requestor releases the page, count is decremented
– buffer manager only reads a page into a frame when its pin-count is 0
– if no frame with pin-count 0, buffer manager has to wait (or a

transaction is aborted -- later)

Duke CS, Fall 2019 CompSci 516: Database Systems 19

When a Page is Requested ...

• Check if the page is already in the buffer pool
• if yes, increment the pin-count of that frame
• If no,

– Choose a frame for replacement using the replacement policy
– If the chosen frame is dirty (has been modified), write it to disk
– Read requested page into chosen frame

• Pin (increase pin-count of) the page and return its address to the
requestor

• If requests can be predicted (e.g., sequential scans), pages
can be pre-fetched several pages at a time

• Concurrency Control & recovery may entail additional I/O when a
frame is chosen for replacement
• e.g. Write-Ahead Log protocol : when we do Transactions

Duke CS, Fall 2019 CompSci 516: Database Systems 20

Buffer Replacement Policy

• Frame is chosen for replacement by a replacement policy

• Least-recently-used (LRU)
– add frames with pin-count 0 to the end of a queue
– choose from head

• Clock (an efficient implementation of LRU)

• First In First Out (FIFO)
• Most-Recently-Used (MRU) etc.

Duke CS, Fall 2019 CompSci 516: Database Systems 21

Buffer Replacement Policy

• Policy can have big impact on # of I/O’s
• Depends on the access pattern
• Sequential flooding: Nasty situation caused by LRU +

repeated sequential scans
– What happens with 10 frames and 9 pages?
– What happens with 10 frames and 11 pages?
– # buffer frames < # pages in file means each page request in each scan

causes an I/O
– MRU much better in this situation (but not in all situations, of course)

Duke CS, Fall 2019 CompSci 516: Database Systems 22

DBMS vs. OS File System

• Operating Systems do disk space and buffer management too:
• Why not let OS manage these tasks?

• DBMS can predict the page reference patterns much more
accurately
– can optimize
– adjust replacement policy
– pre-fetch pages – already in buffer + contiguous allocation
– pin a page in buffer pool, force a page to disk (important for

implementing Transactions concurrency control & recovery)

• Differences in OS support: portability issues

• Some limitations, e.g., files can’t span disks

Duke CS, Fall 2019 CompSci 516: Database Systems 23

Next..

• How are pages stored in a file?
• How are records stored in a page?

– Fixed length records
– Variable length records

• How are fields stored in a record?
– Fixed length fields/records
– Variable length fields/records

Duke CS, Fall 2019 CompSci 516: Database Systems 24

9/19/19

5

Files of Records

• Page or block is OK when doing I/O, but higher
levels of DBMS operate on records, and files of
records

• FILE: A collection of pages, each containing a
collection of records

• Must support:
– insert/delete/modify record
– read a particular record (specified using record id)
– scan all records (possibly with some conditions on the

records to be retrieved)

Duke CS, Fall 2019 CompSci 516: Database Systems 25

File Organization

• File organization: Method of arranging a file of
records on external storage
– One file can have multiple pages
– Record id (rid) is sufficient to physically locate the page

containing the record on disk
– Indexes are data structures that allow us to find the

record ids of records with given values in index search key
fields

• NOTE: Several uses of “keys” in a database
– Primary/foreign/candidate/super keys
– Index search keys

Duke CS, Fall 2019 CompSci 516: Database Systems 26

Alternative File Organizations
Many alternatives exist, each ideal for some situations, and

not so good in others:
• Heap (random order) files: Suitable when typical access is a

file scan retrieving all records
• Sorted Files: Best if records must be retrieved in some

order, or only a “range” of records is needed.
• Indexes: Data structures to organize records via trees or

hashing
– Like sorted files, they speed up searches for a subset of records,

based on values in certain (“search key”) fields

– Updates are much faster than in sorted files

Duke CS, Fall 2019 CompSci 516: Database Systems 27

Unordered (Heap) Files

• Simplest file structure contains records in no
particular order

• As file grows and shrinks, disk pages are allocated
and de-allocated

• To support record level operations, we must:
– keep track of the pages in a file
– keep track of free space on pages
– keep track of the records on a page

• There are many alternatives for keeping track of this

Duke CS, Fall 2019 CompSci 516: Database Systems 28

Heap File Implemented as a List

• The header page id and Heap file name must be stored
someplace

• Each page contains 2 `pointers’ plus data
• Problem?

– to insert a new record, we may need to scan several pages
on the free list to find one with sufficient space

Header
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page Pages with

Free Space

Full Pages

Duke CS, Fall 2019 CompSci 516: Database Systems 29

Heap File Using a Page Directory

• The entry for a page can include the number of free
bytes on the page.

• The directory is a collection of pages
– linked list implementation of directory is just one alternative
– Much smaller than linked list of all heap file pages!

Data
Page 1

Data
Page 2

Data
Page N

Header
Page

DIRECTORY

Duke CS, Fall 2019 CompSci 516: Database Systems 30

9/19/19

6

How do we arrange a collection of
records on a page?

• Each page contains several slots
– one for each record

• Record is identified by <page-id, slot-number>

• Fixed-Length Records
• Variable-Length Records

• For both, there are options for
– Record formats (how to organize the fields within a record)
– Page formats (how to organize the records within a page)

Duke CS, Fall 2019 CompSci 516: Database Systems 31

Page Formats: Fixed Length Records

• Record id = <page id, slot #>
• Packed: moving records for free space management changes rid; may not be

acceptable
• Unpacked: use a bitmap – scan the bit array to find an empty slot
• Each page also may contain additional info like the id of the next page (not shown)

Slot 1
Slot 2

Slot N

.

N M10. . .
M ... 3 2 1

PACKED UNPACKED, BITMAP

Slot 1
Slot 2

Slot N

Free
Space

Slot M
11

number
of records

number
of slots

Duke CS, Fall 2019 CompSci 516: Database Systems 32

End of
lecture 6

Page Formats: Variable Length Records

• Need to find a page with the right amount of space
– Too small – cannot insert
– Too large – waste of space

• if a record is deleted, need to move the records so that all free space
is contiguous
– need ability to move records within a page

• Can maintain a directory of slots (next slide)
– Slot contains <record-offset, record-length>
– deletion = set record-offset to -1

• Record-id rid = <page, slot-in-directory> remains unchanged

Duke CS, Fall 2019 CompSci 516: Database Systems 33

Page Formats: Variable Length Records

• Can move records on page without changing rid
– so, attractive for fixed-length records too

• Store (record-offset, record-length) in each slot
• rid-s unaffected by rearranging records in a page

Page i
Rid = (i,N)

Rid = (i,2)

Rid = (i,1)

Pointer
to start
of free
space

SLOT DIRECTORY

N . . . 2 1
20 16 24 N

slots

Duke CS, Fall 2019 CompSci 516: Database Systems 34

Record Formats: Fixed Length

• Each field has a fixed length
– for all records
– the number of fields is also fixed
– fields can be stored consecutively

• Information about field types same for all records in a file
– stored in system catalogs

• Finding i-th field does not require scan of record
– given the address of the record, address of a field can be obtained

easily

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2

Duke CS, Fall 2019 CompSci 516: Database Systems 35

Record Formats: Variable Length
• Cannot use fixed-length slots for records
• Two alternative formats (# fields is fixed):

• Second offers direct access to i-th field, efficient storage of nulls (special don’t
know value); small directory overhead

• Modification may be costly (may grow the field and not fit in the page)

4 $ $ $ $

Field
Count

Fields Delimited by Special Symbols

F1 F2 F3 F4

F1 F2 F3 F4

Array of Field Offsets

1. use delimiters

2. use offsets at the
start of each record

Duke CS, Fall 2019 CompSci 516: Database Systems 36

9/19/19

7

Indexes

Duke CS, Fall 2019 CompSci 516: Database Systems 37

Indexes

• An index on a file speeds up selections on the search key
fields for the index

– Any subset of the fields of a relation can be the search key for an
index on the relation.

– “Search key” is not the same as “key”
key = minimal set of fields that uniquely identify a tuple

• An index contains a collection of data entries, and
supports efficient retrieval of all data entries k* with a
given key value k

Duke CS, Fall 2019 CompSci 516: Database Systems 38

Remember Terminology

• Index search key (key): k
– Used to search a record

• Data entry : k*
– Pointed to by k
– Contains record id(s) or record itself

• Records or data
– Actual tuples
– Pointed to by record ids

Duke CS, Fall 2019 CompSci 516: Database Systems 39

INDEX
does this

Alternatives for Data Entry k* in Index k

• In a data entry k* we can store:
1. (Alternative 1) The actual data record with key value k,

or
2. (Alternative 2) <k, rid>

• rid = record of data record with search key value k, or

3. (Alternative 3) <k, rid-list>
• list of record ids of data records with search key k>

• Choice of alternative for data entries is orthogonal
to the indexing technique used to locate data
entries with a given key value k

Duke CS, Fall 2019 CompSci 516: Database Systems 40

Alternatives for Data Entries: Alternative 1

• Index structure is a file organization for data records
– instead of a Heap file or sorted file

• How many different indexes can use Alternative 1?
• At most one index can use Alternative 1

– Otherwise, data records are duplicated, leading to redundant storage and potential
inconsistency

• If data records are very large, #pages with data entries is high
– Implies size of auxiliary information in the index is also large

• In a data entry k* we can store:
1. The actual data record with key value k
2. <k, rid>

• rid = record of data record with search key value k

3. <k, rid-list>
• list of record ids of data records with search key k>

Duke CS, Fall 2019 CompSci 516: Database Systems 41

Advantages/
Disadvantages?

Alternatives for Data Entries: Alternative 2, 3

• Data entries typically much smaller than data records
– So, better than Alternative 1 with large data records
– Especially if search keys are small.

• Alternative 3 more compact than Alternative 2
– but leads to variable-size data entries even if search keys have fixed length.

• In a data entry k* we can store:
1. The actual data record with key value k
2. <k, rid>

• rid = record of data record with search key value k

3. <k, rid-list>
• list of record ids of data records with search key k>

Duke CS, Fall 2019 CompSci 516: Database Systems 42

Advantages/
Disadvantages?

9/19/19

8

Index Classification

• Primary vs. secondary
• Clustered vs. unclustered
• Tree-based vs. Hash-based

Duke CS, Fall 2019 CompSci 516: Database Systems 43

Primary vs. Secondary Index

• If search key contains primary key, then called
primary index, otherwise secondary
– Unique index: Search key contains a candidate key

• Duplicate data entries:
– if they have the same value of search key field k
– Primary/unique index never has a duplicate
– Other secondary index can have duplicates

Duke CS, Fall 2019 CompSci 516: Database Systems 44

Clustered vs. Unclustered Index

• If order of data records in a file is the same as, or `close to’,
order of data entries in an index, then clustered, otherwise
unclustered

– Alternative 1 implies clustered
– Alternative 2, 3 are typically unclustered

• unless sorted according to the search key

– Sometimes, clustered also implies Alternative 1
• since sorted files are rare

– A file can be clustered on at most one search key

– Cost of retrieving data records (range queries) through index varies
greatly based on whether index is clustered or not

Duke CS, Fall 2019 CompSci 516: Database Systems 45

• Suppose that Alternative (2) is used for data entries, and that the data records are
stored in a Heap file

• To build clustered index, first sort the Heap file
– with some free space on each page for future inserts
– Overflow pages may be needed for inserts
– Thus, data records are `close to’, but not identical to, sorted

Index entries

Data entries

direct search for

(Index File)
(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

Duke CS, Fall 2019 CompSci 516: Database Systems 46

Clustered vs. Unclustered Index

Methods for indexing

• Tree-based
• Hash-based

• (in detail later)

Duke CS, Fall 2019 CompSci 516: Database Systems 47

System Catalogs

• For each index:
– structure (e.g., B+ tree) and search key fields

• For each relation:
– name, file name, file structure (e.g., Heap file)
– attribute name and type, for each attribute
– index name, for each index
– integrity constraints

• For each view:
– view name and definition

• Plus statistics, authorization, buffer pool size, etc.
• (described in [RG] 12.1)

Catalogs are themselves stored as relations!
Duke CS, Fall 2019 CompSci 516: Database Systems 48

