CompSci 516
Database Systems

Lecture 9 and 10
Storage
and
Index

Instructor: Sudeepa Roy

Duke CS, Fall 2019 Compsci 516: Database Systems

Announcements

* HW1 Deadlines!
— Today: Q4
— Q5: next to next Tuesday 10/01

uke CS, Fall 2019

Storage

* How are pages stored in a file?
— Heap file (no particular order of records)
— Sorted file (records sorted on any given field)
* How are records stored in a page?
— Fixed length records
— Variable length records
* How are fields stored in a record?
— Fixed length fields/records The following slides
— Variable length fields/records gve you the basi deas

Duke CS, Fall 2019 Com

pSci 516: Database Systems

exact implementation may vary

Duke CS, Fall 2019

Heap File Implemented as a List

N N TN 0N
Data Data Data
Page Page Page

P .

e N N q
Data Data Data l; ith
¢ Page Page Page ages wi

Free Space
U

Full Pages

* The header page id and Heap file name must be stored
someplace

* Each page contains 2 “pointers’ plus data

* Buttoinsert a new record, we may need to scan
several pages on the free list to find one with sufficient
space

Compsci 516: Database Systems

Heap File Using a Page Directory

Data
DIRECTORY Page N

The entry for a page can include the number of free
bytes on the page.

* The directory is a collection of pages

— linked list implementation of directory is just one alternative
- Much smaller than linked list of all heap file pages!

Duke CS, Fall 2019 Com

pSci 516: Database Systems

e CS, Fall 2019

Storage

How are pages stored in a file?
How are records stored in a page?
— Fixed length records

— Variable length records

How are fields stored in a record?
— Fixed length fields/records

— Variable length fields/records

Compsci 516: Database Systems

Duk

How do we arrange a collection of
records on a page?

Each page contains several slots
— one for each record

Record is identified by
record id or rid = <page-id, slot-number>

Fixed-Length Records
Variable-Length Records

For both, there are options for
— Record formats (how to organize the fields within a record)

— Page formats (how to organize the records within a page)

ke CS, Fall 2019 CompSci 516: Database

9/24/19

Page Formats: Fixed Length Records

Slot 2 Slot 2

Free Limitations
co Space L of Fixed-length?
Slot N _ Slot N
SotM[__ |
IS [Joi1M
. number M.. 321 number
PACKED ofrecords ~ UNPACKED, BITMAP of slots

Record id = <page id, slot #>

Packed: moving records for free space management changes rid; may not be
acceptable or may be slow to reorganize

Unpacked: use a bitmap — scan the bit array to find an empty slot

Each page also may contain additional info like the id of the next page (not shown)

duke CS, Fall 2019 Compsci 516: Databas

Page Formats: Variable Length Records

* Need to find a page with the right amount of space
— Too small - cannot insert

— Too large — waste of space

* if arecord is deleted, need to move the records so that all
free space is contiguous
— need ability to move records within a page

— Changes record id

« Can maintain a directory of slots (next slide)

Duke CS, Fall 2019 CompSci 516: Database Systems 9

Page Formats: Variable Length Records
Directory of Slots

Rid = (LN
Pagei

Rid = (j,2)

('] r<1d=i.1i

N

to start

L #slots tpree

space

[0 | Tae Tas [N Jrointer
N 2

SLOT DIRECTORY

* Each slot contains <record-offset, record-length>
— deletion = set record-offset to -1

¢ Record-id rid = <page, slot-in-directory> remains unchanged
— Can move records on page without changing rid
— so, attractive for fixed-length records too

Duke S, Fall 2019 Compsci 516: Database Systems 1

Duke

Storage

How are pages stored in a file?
How are records stored in a page?
— Fixed length records

— Variable length records

How are fields stored in a record?
— Fixed length fields/records

— Variable length fields/records

Cs, Fall 2019 CompSci 516: Database Systems 11

Record Formats: Fixed Length

Fl F2 F3 ¥4

L1 L2 L3 L4

Base address (B) Address = B+L1+L2
* Each field has a fixed length
— forall records
— the number of fields is also fixed
— fields can be stored consecutively
* Information about field types same for all records in a file
— stored in system catalogs
¢ Finding i-th field does not require scan of record

— given the address of the record, address of a field can be obtained
easily

Duke CS, Fall 2019 CompSci 516: Database Systems 12

Record Formats: Variable Length

Cannot use fixed-length slots for records
Two alternative formats (note: # fields is fixed for relational data)

F1 F2 F3 F4
S EEC

‘ $ ‘ 1. use delimiters

Fields Delimited by Special Symbols
Field :

Count
oun F1 P2 i) F4

Array of Field Offsets

‘ 2. use offsets at the

\ start of each record

Second offers direct access to i-th field, efficient storage of nulls (special don’t
know value); small directory overhead

Duke CS, Fall 2019 CompSci 516: Database Systems 13

9/24/19

Main takeaways: storage

Disk is slow but large and persistent

* Main memory or buffer is fast but small and
not persistent

If a page is edited in memory, needs to be
written back to disk

Unit of cost = page I/O (read and write)

A record (= tuple) is accessed by rid (record
id): gives the address of the page and the slot

duke CS, Fall 2019 Compsci 516: Database Systems 1

Indexes

Duke CS, Fall 2019 Com

Indexes

* Anindex on a file speeds up selections on the
search key fields for the index

- Any subset of the fields of a relation can be the search
key for an index on the relation.
- “Search key” is not the same as “key”!

¢ An index contains a collection of data entries, and

supports efficient retrieval of all data entries k*
with a given key value k

— Why multiple entries for a given k?

Duke S, Fall 2019 Compsci 516: Database Systems 16

Remember: Terminology

* Index search key (key): k
— Used to search a record

INDEX
does this

* Dataentry : k*
— Pointed to by k
— Contains record id(s) or record itself

* Records or data
— Actual tuples
— Pointed to by record ids

Duke CS, Fall 2019 CompSci 516: Database Systems 17

Alternatives for Data Entry k* in Index k

Advantages/

i ?
* Inadata entry k* we can store: Disadvantages?

1. (Alternative 1) The actual data record with key value k,
or

2. (Alternative 2) <k, rid>
« rid = record of data record with search key value k, or

3. (Alternative 3) <k, rid-list>

« list of record ids of data records with search key k>

* Choice of alternative for data entries is orthogonal
to the indexing technique used to locate data
entries with a given key value k

Duke S, Fall 2019 CompSci 516: Database Systems 18

Alternatives for Data Entries: Alternative 1

* In adata entry k* we can store:
1. The actual data record with key value k

Index structure is a file organization for data records
— instead of a Heap file or sorted file
At most one index can use Alternative 1

— Otherwise, data records are duplicated, leading to redundant storage and
potential inconsistency

Problem with Alt-1: If data records are very large, #pages with
data entries is high
— Implies size of auxiliary information in the index is also large

Duke CS, Fall 2019 Cor

mpSci 516: Database Systems 19

9/24/19

Alternatives for Data Entries: Alternative 2, 3

* Inadata entry k* we can store:
1. The actual data record with key value k

2. <k, rid>
+ rid = record of data record with search key value k
3. <k, rid-list>

« list of record ids of data records with search key k>

- Data entries typically much smaller than data records
- So, better than Alternative 1 with large data records
— Especially if search keys are small.

« Alternative 3 more compact than Alternative 2

- but leads to variable-size data entries even if search keys have
fixed length.

duke CS, Fall 2019 Compsci 516: Database Systems 20

Index Classification

* Primary vs. secondary
e Clustered vs. unclustered

* Tree-based vs. Hash-based

Duke CS, Fall 2019 CompSci 516: Da

Primary vs. Secondary Index

* |f search key contains primary key, then called
primary index, otherwise secondary
- Unique index: Search key contains a candidate key

+ Duplicate data entries:
- if they have the same value of search key field k
- Primary/unique index never has a duplicate
- Other secondary index can have duplicates

Duke S, Fall 2019 Compsci 516: Database Systems

Clustered vs. Unclustered Index

If order of data records in a file is the same as, or
‘close to’, order of data entries in an index, then
clustered, otherwise unclustered

« Afile can be clustered on at most one search key

« Cost of retrieving data records (range queries) through
index varies greatly based on whether index is
clustered or not

Duke CS, Fall 2019 CompSci 516: Da

Clustered vs. Unclustered Index

* Suppose that Alternative (2) is used for data entries, and that the data records are
stored in a Heap file
To build clustered index, first sort the Heap file
- with some free space on each page for future inserts
- Overflow pages may be needed for inserts
- Thus, data records are “close to’, but not identical to, sorted

Index entries
direct search for
data entries

CLUSTERED UNCLUSTERED

N N (Index File) SR~
/8 1\ Eﬁ (Data file) ﬁ/ \[[N ja%;
Data Records D Data Records

Duke S, Fall 2019 CompSci 516: Database Systems

Methods for indexing

* Tree-based
* Hash-based

Duke CS, Fall 2019 Compsci 516 Database Systems

9/24/19

Tree-based Index
and B*-Tree

uke CS, Fall 2019 Compsci 516: Database Systems

Range Searches

* “Find all students with gpa > 3.0”

- If data is in sorted file, do “binary search” to find
first such student, then scan to find others.
— Cost of binary search can be quite high.

Duke CS, Fall 2019 Cor

Index file format

index entry

P | K
o 1P| K2|P, s o o K |Pm

* Simple idea: Create an “index file”

— <first-key-on-page, pointer-to-page>, sorted on keys

1
K k2 ‘ ‘ ‘ ‘ KN H Index File
\

AN \

‘Page1 H Page 2 H Page 3 ‘

Page N ‘ Data File

Can do binary search on (smaller) index file
but may still be expensive: apply this idea repeatedly

Duke S, Fall 2019 Compsci

516: Database Systems

Indexed Sequential Access Method
(ISAM)

Leaf-pages contain data entry — also some overflow pages
DBMS organizes layout of the index — a static structure

If a number of inserts to the same leaf, a long overflow chain can
be created

— affects the performance

Non-leaf
Pages

Leaf pages contain data entries.

Duke CS, Fall 2019 CompSci 516: Database Systems 29

B+ Tree

* Most Widely Used Index: a dynamic structure
* Insert/delete at log N cost = height of the tree (cost =1/0)
— F=fanout, N = no. of leaf pages
— tree is maintained height-balanced
* Minimum 50% occupancy
— Each node contains d <= m <= 2d entries
— Root contains 1 <= m <= 2d entries
— The parameter d is called the order of the tree
* Supports equality and range-searches efficiently

B Index Entries
e index-file (Direct search)

Data Entries
("Sequence set")

Duke S, Fall 2019 CompSci 516: Database Systems

B+ Tree Indexes

Non-leaf
Pages

9/24/19

l:{.:.b._-,:(.f.\:@:r-:-\:l-—»:r;b

Pages
(Sorted by search key)

Leaf pages contain data entries, and are chained (prev & next)
Non-leaf pages have index entries; only used to direct searches:

index entry
1

Example B+ Tree

* Search begins at root, and key comparisons
direct it to a leaf

e Search for 5%, 15%, all data entries >= 24%* ...

Based on the search for 15%, we know

Root it is not in the tree!

‘2' ‘ 3 ‘ 5* ‘ ™ ‘ ‘14"16"‘ ‘ ‘ ‘ 19" 20* 22" ‘ ‘24"27"29" ‘ ‘33“34"‘38"39"

uke CS, Fall 2019 Compsci 516: Database Systems

Example B+ Tree

Note how data entries
in leaf level are sorted

Entries >= 17

Entries< 17

== 1T 1
1 53 e M S
¢ Find
— 28*?
— 29*?
— All>15* and < 30*
Duke CS, Fall 2019 CompSci 516: Database Systems

B+ Trees in Practice

 Typical order: d = 100. Typical fill-factor: 67%
— average fanout F =133
* Typical capacities:
— Height 4: 1334 = 312,900,700 records
— Height 3: 1333 = 2,352,637 records
* Can often hold top levels in buffer pool:
- Level 1= 1page = 8Kbytes
- Level2= 133 pages= 1 Mbyte
- Level 3=17,689 pages = 133 MBytes

Inserting a Data Entry into a B+ Tree

See this slide later,
First, see examples on the next
few slides

* Find correct leaf L

e PutdataentryontoL
- If L has enough space, done
- Else, must split L
« into Land a new node L2

* Redistribute entries evenly, copy up middle key.
* Insert index entry pointing to L2 into parent of L.

e This can happen recursively

- To split index node, redistribute entries evenly, but push
up middle key
« Contrast with leaf splits
* Splits “grow” tree; root split increases height.
- Tree growth: gets wider or one level taller at top.

Duke CS, Fall 2019 CompSci 516: Database Systems

STEP-1

‘2"3*‘5*‘7*‘ ‘14*‘15" ‘ Hw"zn* 22*‘ Hu*‘zr‘zg*‘ Hss"w‘sa"ss"

* Copy-up: 5 appears
in leaf and the level

above

* Observe how
minimum —
occupancyis [#[[[| []["[+]]
guaranteed
Duke CS, Fall 2019 Compsci 516: Database Systems

9/24/19

Inserting 8* into Example B+ Tree

Need to split parent Rgot \

STEP-2

L\\O

N

‘3‘ ‘ L ‘14‘16‘ ‘19‘20‘22‘ “24‘27‘29‘ ‘33‘34‘38‘39‘
Eﬂ.

difference?

* All data entries must

* Note difference between
copy-up and push-up I
* Whatis the reason for this

appear as leaves

- dorammesge [][] [[«][]
* no such requirement for

indexes / s ra

~ (50 avoid redundancy)

Example B+ Tree After Inserting 8*

Roo\

=L I

N N TN
EEL LT Jels]]

N L
‘ 191 2uﬁ zz*‘ ‘ ‘24" 27"29" ‘ ‘33" 34" aa" 39"

* Notice that root was split, leading to increase in height.

* In this example, we can avoid split by re-distributing entries (insert 8 to
the 27 Jeaf node from left and copy it up instead of 13)
* however, this is usually not done in practice - since need to access 1-2
extra pages always (for two siblings), and average occupancy may
remain unaffected as the file grows

ke CS, Fall 2019 Compsci 516: Database Systems

Deleting a Data Entry from a B+ Tree

‘ Each non-root node contains d <= m <= 2d entries

 Start at root, find leaf L where entry belongs

* Remove the entry
— If Lis at least half-full, done!
- If Lhas only d-1 entries,

* Try to re-distribute, borrowing from sibling (adjacent node with same
parentas L)

See this slide later,
First, see examples on the next
few slides

« If re-distribution fails, merge L and sibling
* If merge occurred, must delete entry (pointing to L or
sibling) from parent of L

* Merge could propagate to root, decreasing height

Duke CS, Fall 2019 CompSci 516: Database Systems

Example Tree: Delete 19*

RMN Before deleting 19*

N N TN N L a
‘ 5*‘ 7*‘ a" ‘ ‘w‘w‘ ‘ ‘ 191 zn*‘ 22*‘ ‘ ‘24*‘27*‘29-‘ ‘ ‘33-‘ 34~‘ 33" 39*‘

* We had inserted 8*
* Now delete 19*
* Easy

2019 CompSci 516: Database Systems

Example Tree: Delete 19*

After deleting 19*

N L TN N TN a
‘ 5*‘ 7 ‘ 8*‘ ‘14"‘16“‘ ‘ ‘ ‘20*‘22*‘ ‘ ‘ ‘24*‘27*‘29*‘ Hw‘ 34~‘33*‘39"

RN

Example Tree: Delete 20*

Before deleting 20*

N N TN N TN a
‘ 5*‘ 7*‘ a" ‘ ‘w‘w‘ ‘ ‘ ‘20“22" ‘ ‘ ‘24*‘27*‘29-‘ ‘ ‘33-‘ 34~‘ 33" 39*‘

L]

9/24/19

Example Tree: Delete 20*

RWN After deleting 20*

N N TN L L
8 O O 5 2 5 I E ES E

e <2 entries in leaf-node
¢ Redistribute

Example Tree: Delete 20*

After deleting 20*
Roo\ -step 2

{12 [
o=l 0] [l 1

0 O) I ESS G

* Notice how middle key is copied up

Example Tree: ... And Then Delete 24*

Before deleting 24*

Root

{152 [
[=1

P P P Pt h P —
8T O . 5 S S

Example Tree: ... And Then Delete 24*

After deleting 24*
Root -Step 1

{12 [
[l 1

P P P P PN -
8 O I R s I S ES O

* Once again, imbalance at leaf

* Can we borrow from sibling(s)?
* No-d-1andd entries (d =2)

* Need to merge

ke CS, Fall 2019 CompSci 516: Database Systems

Example Tree: ... And Then Delete 24*

After deleting 24*
ROON - Step 2

Il-l.l.l Observe “toss’ of old index entry 27

P P P Pt —
(8T O R S E A

* Imbalance at parent
because, three index 5, 13, 30

* Merge again but five pointers to leaves
* But need to “pull down” root index entry

Duke CS, Fall 2019 CompSci 516: Database Syster 4

Final Example Tree

Example of Non-leaf Re-distribution

* Anintermediate tree is shown

* In contrast to previous example, can re-distribute entry from left child of
root to right child

21-‘ mﬁ 27T strW:;ﬂ 34-1 381

— |
‘14-‘15-‘ ‘ H17T18“ ‘ Hzo'

39"

ke CS, Fall 2019 CompSci 516: Database Systems 19

9/24/19

After Re-distribution

* Intuitively, entries are re-distributed by "pushing through’ the
splitting entry in the parent node.

— It suffices to re-distribute index entry with key 20; we’ve re-distributed
17 as well for illustration.

Ro‘\

T~ ¥~ T~ T~ P NN

5

78 21‘{ ‘ HZZ" 27* 29+ ‘ ‘33' 34‘{ 38|

39*|

uke CS, Fall 2019 Compsci 516: Database Systems ¢

Duplicates

First Option:
— The basic search algorithm assumes that all entries with the
same key value resides on the same leaf page
— If they do not fit, use overflow pages (like ISAM)
Second Option:
— Several leaf pages can contain entries with a given key value

— Search for the left most entry with a key value, and follow the
leaf-sequence pointers
— Need modification in the search algorithm
if k* = <k, rid>, several entries have to be searched
— Orinclude rid in k — becomes unique index, no duplicate

— If k* = <k, rid-list>, same solution, but if the list is long, again a
single entry can span multiple pages

Duke CS, Fall 2019 Compsc

A Note on 'Order’

e Order (d)
— denotes minimum occupancy
« replaced by physical space criterion in practice ("at least half-
full’)
- Index pages can typically hold many more entries than leaf pages

— Variable sized records and search keys mean different nodes will
contain different numbers of entries.

— Even with fixed length fields, multiple records with the same search key
value (duplicates) can lead to variable-sized data entries (if we use
Alternative (3))

Duke S, Fall 2019 Compsc

Summary

» Tree-structured indexes are ideal for range-searches, also good
for equality searches

* ISAM s a static structure
— Only leaf pages modified; overflow pages needed

— Overflow chains can degrade performance unless size of data set and
data distribution stay constant

e B+ tree is a dynamic structure
- Inserts/deletes leave tree height-balanced; log ¢ N cost
— High fanout (F) means depth rarely more than 3 or 4
— Almost always better than maintaining a sorted file

— Most widely used index in database management systems because of
its versatility.

— One of the most optimized components of a DBMS
+ Next: Hash-based index

Duke CS, Fall 2019 Compsc

Hash-based Index

Duke S, Fall 2019 CompSci 516: Database Systems 5

Hash-Based Indexes

* Records are grouped into buckets

— Bucket = primary page plus zero or more overflow pages

¢ Hashing function h:
— h(r) = bucket in which (data entry for) record r belongs
— h looks at the search key fields of r
— No need for “index entries” in this scheme

Duke CS, Fall 2019 CompSci 516: Database Systems

9/24/19

Example: Hash-based index

Index organized file hashed on AGE, with Auxiliary index on SAL

h2(AGE) = 00
h1(AGE) = 00 i
h1(AG
AGE :

h2(SAL) = 01
Bristow, 29, 2007

Alternative 2
Employee File hashed on AGE

Alternative 1

Duke CS, Fall 2019 Compsci 516: Database Systems

File of <SAL, rid> pairs hashed on SAL

Introduction

* Hash-based indexes are best for equality
selections

— Find all records with name = “Joe”
— Cannot support range searches

— But useful in implementing relational operators like
join (later)

* Static and dynamic hashing techniques exist
— trade-offs similar to ISAM vs. B+ trees

Duke CS, Fall 2019 CompSci 516: Database Systems

Static Hashing

* Pages containing data = a collection of buckets

— each bucket has one primary page, also possibly
overflow pages

— buckets contain data entries k*

0o +—— --.-
h(key) mod N
N1 L ...
Primary bucket pages Overflow pages

Duke S, Fall 2019 Compsci 516: Database Systems

Static Hashing

e # primary pages fixed

- aIIozc:jated sequentially, never de-allocated, overflow pages if
needed.

e h(k) mod N = bucket to which data entry with key k
belongs
— N =# of buckets

0o +—— ---
h(key) mod N
o e I
|\ A
Primary bucket pages Overflow pages

Duke CS, Fall 2019 CompSci 516: Database Systems 59

Static Hashing

Hash function works on search key field of record r
— Must distribute values over range 0 ... N-1
- h(key) = (a * key + b) usually works well
« bucket = h(key) mod N
- aand b are constants — chosen to tune h
Advantage:
- #buckets known — pages can be allocated sequentially
- search needs 1 1/0 (if no overflow page)
- insert/delete needs 2 1/0 (if no overflow page) (why 2?)
« Disadvantage:
— Long overflow chains can develop if file grows and degrade performance (data
skew)
— Or waste of space if file shrinks
* Solutions:
— keep some pages say 80% full initially
— Periodically rehash if overflow pages (can be expensive)
— or use Dynamic Hashing

Duke S, Fall 2019 CompSci 516: Database Systems 60

10

Dynamic Hashing Techniques

* Extendible Hashing
e Linear Hashing

Duke CS, Fall 2019 CompSci 516: Database Systems

9/24/19

Extendible Hashing

e Consider static hashing
¢ Bucket (primary page) becomes full

e Why not re-organize file by doubling # of buckets?
- Reading and writing (double #pages) all pages is expensive

+ Idea: Use directory of pointers to buckets
- double # of buckets by doubling the directory, splitting just the
bucket that overflowed
- Directory much smaller than file, so doubling it is much cheaper
— Only one page of data entries is split
- No overflow page (new bucket, no new overflow page)
— Trick lies in how hash function is adjusted

duke CS, Fall 2019 Compsci 516: Database Systems

LocaL pEpTH” u

LOCAL DEPTH/I—"
Bucket A
GLOBAL DEPTH

Example

M
If bucket is full, split it
« allocate new page
. 10

 re-distribute N Bucket C

. . %
Suppose inserting 13 —
« binary = 1101 15 7+ 19 Buckst D
¢ bucket 01

: DATA PAGES
* Has space, insert
Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Syster 14

Bucket A
Example comps owens |5]
* Directory is array of size 4 Bucket B
— each element points to a bucket m
— #bits to represent =log4=2=
global depth Bucket C
 To find bucket for search key r 7]
. DIRECTORY
— take last global depth # bits of 15 7* 19* Bucket D
h(r)
— assume h(r)=r DATA PAGES
— If h(r) =5 = binary 101
— itisin bucket pointed to by 01
Cs, Spring 2016 CompSci 516: Data Intensive Computing Syster 13
LOCAL szm/"_"
Bucket A
Example h
Insert: Bucket B
If bucket is full, split it
« allocate new page
* re-distribute Bucket C
Suppose inserting 20*
) DIRECTORY E
* binary = 10100 15 7* 19* Bucket D
¢ bucket 00
* Already full DATA PAGES
* To split, consider last three bits of 10100
* Last two bits the same 00 — the data entry
will belong to one of these buckets
* Third bit to distinguish them
Cs, Spring 2016 CompSci 516: Data Intensive Computing Syster 15

Global depth: Max # of bits needed to tell which bucket an entry belongs to
Exa I I l p I e Local depth: # of bits used to determine if an entry belongs to this bucket

+ also denotes whether a directory doubling is needed while splitting
* no directory doubling needed when 9* = 1001 is inserted (LD< GD)

LocaL pepTH-Z—|

GLOBAL DEPTH

Bucket A LOCAL DEPTH:

GLOBAL DEPTH

Bucket B

T

Bucket B
o1 001
10
010
Bucket C
1 . N Bucket C
100
DIRECTORY Bucket D 101 [2]
1547 19" e
110 _7 19 Bucket D
7 1m
Bucket A2
(‘splitimage' DIRECTORY Bucket A2
of Bucket A) {new “spitt mage!
of Bucket A)
Duke C, Fall 2019 CompSci 516: Database Systems 66

11

When does bucket split cause
directory doubling?

Before insert, local depth of bucket = global depth
Insert causes local depth to become > global
depth

directory is doubled by copying it over and “fixing’
pointer to split image page

Duke CS, Fall 2019 CompSci 516: Database Systems 6

9/24/19

Comments on Extendible Hashing

« If directory fits in memory, equality search answered with one
disk access (to access the bucket); else two.
— 100MB file, 100 bytes/rec, 4KB page size, contains 10° records (as data

entries) and 25,000 directory elements; chances are high that directory
will fit in memory.

— Directory grows in spurts, and, if the distribution of hash values is skewed,
directory can grow large
— Multiple entries with same hash value cause problems
* Delete:

— If removal of data entry makes bucket empty, can be merged with “split
image’

— If each directory element points to same bucket as its split image, can
halve directory.

duke CS, Fall 2019 Compsci 516: Database Systems 68

Linear Hashing

* This is another dynamic hashing scheme
— an alternative to Extendible Hashing
* LH handles the problem of long overflow chains
— without using a directory
—handles duplicates and collisions
— very flexible w.r.t. timing of bucket splits

Duke CS, Fall 2019 Cor

Linear Hashing: Basic Idea

Use a family of hash functions ho, hy, hy, ...
- hi(key) = h(key) mod(2N)
— N =initial # buckets
- his some hash function (range is not 0 to N-1)
— If N =24, for some do, h; consists of applying h and looking at the
last d; bits, where d; =do +i
+ Note: hj(key) = h(key) mod(2%*i)
- his doubles the range of h;
« if hymaps to M buckets, h;,; maps to 2M buckets
« similar to directory doubling
- Suppose N=32,dp=5
« hy=h mod 32 (last 5 bits)
» h;=hmod 64 (last 6 bits)
« h,=h mod 128 (last 7 bits) etc.

Duke S, Fall 2019 Compsci 516: Database Systems

Linear Hashing: Rounds

* Directory avoided in LH by using overflow pages,
and choosing bucket to split round-robin

* During round Level, only hieve and hiever+1 are in
use

* The buckets from start to last are split sequentially
— this doubles the no. of buckets

* Therefore, at any point in a round, we have
— buckets that have been split
— buckets that are yet to be split
— buckets created by splits in this round

Duke CS, Fall 2019 CompSci 516: Database Systems 7

Overview of LH File

* In the middle of a round Level — originally O to Nievel

0 } Buckets split in this round:
Next - 1

| if hLever (r) is in this range, must use
Bucket to be split Next

heever + 1(r) to decide if entry is in
“split image' bucket.

Buckets that existed at the

beginning of this round: ! L if hiever (r)
this is the range of is in this range, no need
h Level

“split image' buckets:
created (through splitting
+—— of other buckets) in this round

NLeveI
Buckets 0 to Next-1 have been split
Next to Neevel yet to be split
Round ends when all Neever initial (for
round Level) buckets are split

Duke S, Fall 2019 CompSci 516: Database Systems

12

Overview of LH File

* In the middle of a round Level — originally O to Nievel

0 } Buckets split in this round:
Next - 1
Bucket to be split Next

if hiever (r) is in this range, must use
heever + 1 (r) to decide if entry is in

“split image' bucket.

Buckets that existed at the

beginning of this round: ! L. if hiever (r)
this is the range of is in this range, no need
h Level
“split image' buckets
NL ' created (through splitting
eve! +— of other buckets) in this round
Buckets 0 to Next-1 have been

split

Next to Nievel yet to be split
Round ends when all Nrinitial
(for round R) buckets are split

Search: To find bucket for data entry r, find hievel(r):
If hievei(r) in range “Next to Neevel *, r belongs here.
Else, r could belong to bucket hevei(r) or hievel(r)+Nr
Apply hieversa(r) to find out

Duke CS, Fall 2019 CompSci 516: Database Systems

9/24/19

Linear Hashing: Insert

* Insert: Find bucket by applying hever / Nievels1:
— If bucket to insert into is full:

1. Add overflow page and insert data entry
2. Split Next bucket and increment Next

* Note: We are going to assume that a split is “triggered’
whenever an insert causes the creation of an overflow
page, but in general, we could impose additional
conditions for better space utilization ([RG], p.380)

Duke CS, Fall 2019 Compsci 516: Database Systems

Example of Linear Hashing

Level=0, No=4=2%, do=2

" oo paces * Insert43* = 101011
_ e ho(43)=11
000 00 Ema. . Fu”
wor | 0| [F[P | vk 2i5%° ¢ Insertin an overflow page

* Need a split at Next (=0)
o0 | 10 '\ Primary ¢ Entriesin 00 is distributed to

bucket page

o | | Y 000 and 100

(This info (The actual contents
is for illustration of the linear hashed
only!) file)
Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Syster 26

Example of Linear Hashing

Level=0, No=4=290, do=2 Level=0, No=4=240, do=2
h h PRIMARY h h PRIMARY OVERFLOW
B 0 [Next=o0 PAGES . 1 o PAGES PAGES

oo | oo | [t] oo | 0o

l‘%t:l
001 01 EEE. 33:2 ﬁx(l:gSt 001 01 EEE.

bucket page
or | | PP o | o | BT

(This info (The actual contents
is forillustration of the linear hashed 00 | o mﬁ..

0
only!) file)
* Nextisincremented after split
* Note the difference between overflow page of 11
and split image of 00 (000 and 100)
Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 27

Example of Linear Hashing

* Search for 18* = 10010
* between Next (=1) and 4
+ this bucket has not been split
* 18 should be here

Level=0, No=4=2%, do=2

h h PRIMARY OVERFLOW
+ Search for 32* = 100000 or 44* = 101100 : 0 PAGES PAGES
Between 0 and Next-1
+ Need h: 000 00

ext=1
Not all insertion triggers split 001 o1 EEE.

* Insert 37* =100101

* Hasspace ot "
Splitting at Next?
* No overflow bucket needed o011 11 E m-..

+ Just copy at the image/original 100 o mm..

Next = Nievel-1 and a split?
+ Startanew round
* Increment Level
* NextresettoO

Duke CS, Spring 2016 Compsci 516: Data Intensive Computing Systems 28

Example of Linear Hashing

Not all insertion triggers split
Insert 37* = 100101

Has space
Level=0, No=4=2%0, do=2 Level=0, No=4=2%0, do=2
h h PRIMARY OVERFLOW h h PRIMARY OVERFLOW
1 o PAGES PAGES 1 0 PAGES PAGES

001 | o1 001 | 01
o | o | [T o |
o | | S w |

°

8
o
8

Duke CS, Spring 2016 Compsci 516: Data Intensive Computing Systems 28

13

9/24/19

Example of Linear Hashing

* Splitting at Next?
* No overflow bucket needed
+ Just copy at the image/original

insert 29* = 11101

Level=0, No=4=2%, do=2
Level=0, No=4=2%, do=2

h h PRIMARY OVERFLOW
h h PRIMARY OVERFLOW 1 o PAGES PAGES
1 0 PAGES PAGES
000 | 00

ext=1
wr | ot | T . o | o |

31 7% 11 m...
ot u Hm m-.- 011 11 .ﬁ..
w0 | oo | [safse]] oo | o | fedeed 1]
101 | o1 H 37*
pring 2016 m Data Intensive Computing Systems 28

Example: End of a Round

insert 50* = 110010 level=, Ni=8=2%, di-3
p i * 66* 34%
(after inserting 22*, 66*, 34 PRIMARY OVERFLOW!|
- check yourself) hy |hy PAGES PAGES
Level=0, No=4=29, do=2 Next=0
PRIMARY OVERFLOW
PAGES
000 | 00 32+
0010 010 66* 18* 107 34% | [s0*
001 | o1
0011|011 43% 35% 11%
o010 | 10 __sa*urm* 34¥
011 11 EFCEE AN I CEE
10| 0o e 5% 37* 29
101 o1 5+ 37%29% 0110|110 14* 30% 22*
10| 10 o111 111

duke CS, Fall 2019 Compsci 516: Database Systems 80

LHvs. EH

* They are very similar
— hi to hi.q is like doubling the directory
— LH: avoid the explicit directory, clever choice of split
— EH: always split — higher bucket occupancy

* Uniform distribution: LH has lower average cost
— No directory level

» Skewed distribution
— Many empty/nearly empty buckets in LH
— EH may be better

Duke CS, Fall 2019 Cor

System Catalogs

For each index:
— structure (e.g., B+ tree) and search key fields
For each relation:
— name, file name, file structure (e.g., Heap file)
— attribute name and type, for each attribute
— index name, for each index
— integrity constraints
For each view:
— view name and definition
Plus statistics, authorization, buffer pool size, etc.
(described in [RG] 12.1)
Catalogs are themselves stored as relations!

Duke S, Fall 2019 Compsci 516: Database Systems

Summary

* Hash-based indexes: best for equality searches, cannot
support range searches.

* Static Hashing can lead to long overflow chains.

» Extendible Hashing avoids overflow pages by splitting a
full bucket when a new data entry is to be added to it
— Duplicates may still require overflow pages
— Directory to keep track of buckets, doubles periodically

— Can get large with skewed data; additional I/O if this does not
fit in main memory

Duke CS, Fall 2019 CompSci 516: Database Systems 83

Summary

Linear Hashing avoids directory by splitting buckets
round-robin, and using overflow pages

— Overflow pages not likely to be long

— Duplicates handled easily

For hash-based indexes, a skewed data distribution is one
in which the hash values of data entries are not uniformly
distributed

— bad

Duke S, Fall 2019 CompSci 516: Database Systems

14

