CompSci 516
Database Systems

Lecture 9 and 10
Storage
and
Index

Instructor: Sudeepa Roy

Duke CS, Fall 2019 Compsci 516: Database Systems

Announcements

* HW1 Deadlines!
— Today: Q4
— Q5: next to next Tuesday 10/01
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Storage

* How are pages stored in a file?
— Heap file (no particular order of records)
— Sorted file (records sorted on any given field)
* How are records stored in a page?
— Fixed length records
— Variable length records
* How are fields stored in a record?
— Fixed length fields/records The following slides
— Variable length fields/records gve you the basi deas
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exact implementation may vary
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Heap File Implemented as a List

N N TN 0N
Data Data Data
Page Page Page

P .

e N N q
Data Data Data l; ith
¢ Page Page Page ages wi

Free Space
U

Full Pages

* The header page id and Heap file name must be stored
someplace

* Each page contains 2 “pointers’ plus data

* Buttoinsert a new record, we may need to scan
several pages on the free list to find one with sufficient
space
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Heap File Using a Page Directory

Data
DIRECTORY Page N

The entry for a page can include the number of free
bytes on the page.

* The directory is a collection of pages

— linked list implementation of directory is just one alternative
- Much smaller than linked list of all heap file pages!
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Storage

How are pages stored in a file?
How are records stored in a page?
— Fixed length records

— Variable length records

How are fields stored in a record?
— Fixed length fields/records

— Variable length fields/records
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Duk

How do we arrange a collection of
records on a page?

Each page contains several slots
— one for each record

Record is identified by
record id or rid = <page-id, slot-number>

Fixed-Length Records
Variable-Length Records

For both, there are options for
— Record formats (how to organize the fields within a record)

— Page formats (how to organize the records within a page)
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Page Formats: Fixed Length Records

Slot 2 Slot 2

Free Limitations
co Space L of Fixed-length?
Slot N \_ Slot N
SotM[__ |
IS [ Joi1M
. number M.. 321 number
PACKED  ofrecords ~ UNPACKED, BITMAP  of slots

Record id = <page id, slot #>

Packed: moving records for free space management changes rid; may not be
acceptable or may be slow to reorganize

Unpacked: use a bitmap — scan the bit array to find an empty slot

Each page also may contain additional info like the id of the next page (not shown)
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Page Formats: Variable Length Records

* Need to find a page with the right amount of space
— Too small - cannot insert

— Too large — waste of space

* if arecord is deleted, need to move the records so that all
free space is contiguous
— need ability to move records within a page

— Changes record id

« Can maintain a directory of slots (next slide)
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Page Formats: Variable Length Records
Directory of Slots

Rid = (LN
Pagei

Rid = (j,2)

(' ] r<1d=i.1i

N

to start

L #slots  tpree

space

[0 | Tae Tas [N Jrointer
N 2

SLOT DIRECTORY

* Each slot contains <record-offset, record-length>
— deletion = set record-offset to -1

¢ Record-id rid = <page, slot-in-directory> remains unchanged
— Can move records on page without changing rid
— so, attractive for fixed-length records too
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Duke

Storage

How are pages stored in a file?
How are records stored in a page?
— Fixed length records

— Variable length records

How are fields stored in a record?
— Fixed length fields/records

— Variable length fields/records
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Record Formats: Fixed Length

Fl F2 F3 ¥4

L1 L2 L3 L4

Base address (B) Address = B+L1+L2
* Each field has a fixed length
— forall records
— the number of fields is also fixed
— fields can be stored consecutively
* Information about field types same for all records in a file
— stored in system catalogs
¢ Finding i-th field does not require scan of record

— given the address of the record, address of a field can be obtained
easily
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Record Formats: Variable Length

Cannot use fixed-length slots for records
Two alternative formats (note: # fields is fixed for relational data)

F1 F2 F3 F4
S EEC

‘ $ ‘ 1. use delimiters

Fields Delimited by Special Symbols
Field :

Count
oun F1 P2 i) F4

Array of Field Offsets

‘ 2. use offsets at the

\ start of each record

Second offers direct access to i-th field, efficient storage of nulls (special don’t
know value); small directory overhead
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Main takeaways: storage

Disk is slow but large and persistent

* Main memory or buffer is fast but small and
not persistent

If a page is edited in memory, needs to be
written back to disk

Unit of cost = page I/O (read and write)

A record (= tuple) is accessed by rid (record
id): gives the address of the page and the slot

duke CS, Fall 2019 Compsci 516: Database Systems 1

Indexes

Duke CS, Fall 2019 Com

Indexes

* Anindex on a file speeds up selections on the
search key fields for the index

- Any subset of the fields of a relation can be the search
key for an index on the relation.
- “Search key” is not the same as “key”!

¢ An index contains a collection of data entries, and

supports efficient retrieval of all data entries k*
with a given key value k

— Why multiple entries for a given k?
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Remember: Terminology

* Index search key (key): k
— Used to search a record

INDEX
does this

* Dataentry : k*
— Pointed to by k
— Contains record id(s) or record itself

* Records or data
— Actual tuples
— Pointed to by record ids
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Alternatives for Data Entry k* in Index k

Advantages/

i ?
* Inadata entry k* we can store: Disadvantages?

1. (Alternative 1) The actual data record with key value k,
or

2. (Alternative 2) <k, rid>
« rid = record of data record with search key value k, or

3. (Alternative 3) <k, rid-list>

« list of record ids of data records with search key k>

* Choice of alternative for data entries is orthogonal
to the indexing technique used to locate data
entries with a given key value k
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Alternatives for Data Entries: Alternative 1

* In adata entry k* we can store:
1.  The actual data record with key value k

Index structure is a file organization for data records
— instead of a Heap file or sorted file
At most one index can use Alternative 1

— Otherwise, data records are duplicated, leading to redundant storage and
potential inconsistency

Problem with Alt-1: If data records are very large, #pages with
data entries is high
— Implies size of auxiliary information in the index is also large

Duke CS, Fall 2019 Cor
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Alternatives for Data Entries: Alternative 2, 3

* Inadata entry k* we can store:
1. The actual data record with key value k

2. <k, rid>
+ rid = record of data record with search key value k
3. <k, rid-list>

« list of record ids of data records with search key k>

- Data entries typically much smaller than data records
- So, better than Alternative 1 with large data records
— Especially if search keys are small.

« Alternative 3 more compact than Alternative 2

- but leads to variable-size data entries even if search keys have
fixed length.
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Index Classification

* Primary vs. secondary
e Clustered vs. unclustered

* Tree-based vs. Hash-based
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Primary vs. Secondary Index

* |f search key contains primary key, then called
primary index, otherwise secondary
- Unique index: Search key contains a candidate key

+ Duplicate data entries:
- if they have the same value of search key field k
- Primary/unique index never has a duplicate
- Other secondary index can have duplicates
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Clustered vs. Unclustered Index

If order of data records in a file is the same as, or
‘close to’, order of data entries in an index, then
clustered, otherwise unclustered

« Afile can be clustered on at most one search key

« Cost of retrieving data records (range queries) through
index varies greatly based on whether index is
clustered or not
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Clustered vs. Unclustered Index

* Suppose that Alternative (2) is used for data entries, and that the data records are
stored in a Heap file
To build clustered index, first sort the Heap file
- with some free space on each page for future inserts
- Overflow pages may be needed for inserts
- Thus, data records are “close to’, but not identical to, sorted

Index entries
direct search for
data entries

CLUSTERED UNCLUSTERED

N N (Index File) SR~
/8 1\ Eﬁ (Data file) ﬁ/ \[ [ N ja%;
Data Records D Data Records
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Methods for indexing

* Tree-based
* Hash-based

Duke CS, Fall 2019 Compsci 516 Database Systems
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Tree-based Index
and B*-Tree

uke CS, Fall 2019 Compsci 516: Database Systems

Range Searches

* “Find all students with gpa > 3.0”

- If data is in sorted file, do “binary search” to find
first such student, then scan to find others.
— Cost of binary search can be quite high.
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Index file format

index entry

P | K
o 1P| K2|P, s o o K |Pm

* Simple idea: Create an “index file”

— <first-key-on-page, pointer-to-page>, sorted on keys

1
K k2 ‘ ‘ ‘ ‘ KN H Index File
\

AN \

‘Page1 H Page 2 H Page 3 ‘

Page N ‘ Data File

Can do binary search on (smaller) index file
but may still be expensive: apply this idea repeatedly

Duke S, Fall 2019 Compsci
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Indexed Sequential Access Method
(ISAM)

Leaf-pages contain data entry — also some overflow pages
DBMS organizes layout of the index — a static structure

If a number of inserts to the same leaf, a long overflow chain can
be created

— affects the performance

Non-leaf
Pages

Leaf pages contain data entries.

Duke CS, Fall 2019 CompSci 516: Database Systems 29

B+ Tree

* Most Widely Used Index: a dynamic structure
* Insert/delete at log N cost = height of the tree (cost =1/0)
— F=fanout, N = no. of leaf pages
— tree is maintained height-balanced
*  Minimum 50% occupancy
— Each node contains d <= m <= 2d entries
— Root contains 1 <= m <= 2d entries
— The parameter d is called the order of the tree
* Supports equality and range-searches efficiently

B Index Entries
e index-file (Direct search)

Data Entries
("Sequence set")

Duke S, Fall 2019 CompSci 516: Database Systems




B+ Tree Indexes

Non-leaf
Pages

9/24/19

l:{.:.b._-,:(.f.\:@:r-:-\:l-—»:r;b

Pages
(Sorted by search key)

Leaf pages contain data entries, and are chained (prev & next)
Non-leaf pages have index entries; only used to direct searches:

index entry
1

Example B+ Tree

* Search begins at root, and key comparisons
direct it to a leaf

e Search for 5%, 15%, all data entries >= 24%* ...

Based on the search for 15%, we know

Root it is not in the tree!

‘2' ‘ 3 ‘ 5* ‘ ™ ‘ ‘14"16"‘ ‘ ‘ ‘ 19" 20* 22" ‘ ‘24"27"29" ‘ ‘33“34"‘38"39"
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Example B+ Tree

Note how data entries
in leaf level are sorted

Entries >= 17

Entries< 17

== 1T 1
1 53 e M S
¢ Find
— 28*?
— 29*?
— All>15* and < 30*
Duke CS, Fall 2019 CompSci 516: Database Systems

B+ Trees in Practice

 Typical order: d = 100. Typical fill-factor: 67%
— average fanout F =133
* Typical capacities:
— Height 4: 1334 = 312,900,700 records
— Height 3: 1333 = 2,352,637 records
* Can often hold top levels in buffer pool:
- Level 1= 1page = 8Kbytes
- Level2= 133 pages= 1 Mbyte
- Level 3=17,689 pages = 133 MBytes

Inserting a Data Entry into a B+ Tree

See this slide later,
First, see examples on the next
few slides

* Find correct leaf L

e PutdataentryontoL
- If L has enough space, done
- Else, must split L
« into Land a new node L2

* Redistribute entries evenly, copy up middle key.
* Insert index entry pointing to L2 into parent of L.

e This can happen recursively

- To split index node, redistribute entries evenly, but push
up middle key
« Contrast with leaf splits
* Splits “grow” tree; root split increases height.
- Tree growth: gets wider or one level taller at top.

Duke CS, Fall 2019 CompSci 516: Database Systems

STEP-1

‘2"3*‘5*‘7*‘ ‘14*‘15" ‘ Hw"zn* 22*‘ Hu*‘zr‘zg*‘ Hss"w‘sa"ss"

* Copy-up: 5 appears
in leaf and the level

above

* Observe how
minimum —
occupancyis  [#[[ [ | []["[+] ]
guaranteed
Duke CS, Fall 2019 Compsci 516: Database Systems
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Inserting 8* into Example B+ Tree

Need to split parent  Rgot \

STEP-2

L\\O

N

‘3‘ ‘ L ‘14‘16‘ ‘19‘20‘22‘ “24‘27‘29‘ ‘33‘34‘38‘39‘
Eﬂ.

difference?

*  All data entries must

*  Note difference between
copy-up and push-up I
*  Whatis the reason for this

appear as leaves

- dorammesge [ ][] [ [« ][ ]
*  no such requirement for

indexes / s ra

~ (50 avoid redundancy)

Example B+ Tree After Inserting 8*

Roo\

=L I

N N TN
EEL LT Jels] ]

N L
‘ 191 2uﬁ zz*‘ ‘ ‘24" 27"29" ‘ ‘33" 34" aa" 39"

* Notice that root was split, leading to increase in height.

* In this example, we can avoid split by re-distributing entries (insert 8 to
the 27 Jeaf node from left and copy it up instead of 13)
* however, this is usually not done in practice - since need to access 1-2
extra pages always (for two siblings), and average occupancy may
remain unaffected as the file grows
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Deleting a Data Entry from a B+ Tree

‘ Each non-root node contains d <= m <= 2d entries

 Start at root, find leaf L where entry belongs

* Remove the entry
— If Lis at least half-full, done!
- If Lhas only d-1 entries,

* Try to re-distribute, borrowing from sibling (adjacent node with same
parentas L)

See this slide later,
First, see examples on the next
few slides

« If re-distribution fails, merge L and sibling
* If merge occurred, must delete entry (pointing to L or
sibling) from parent of L

* Merge could propagate to root, decreasing height
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Example Tree: Delete 19*

RMN Before deleting 19*

N N TN N L a
‘ 5*‘ 7*‘ a" ‘ ‘w‘w‘ ‘ ‘ 191 zn*‘ 22*‘ ‘ ‘24*‘27*‘29-‘ ‘ ‘33-‘ 34~‘ 33" 39*‘

* We had inserted 8*
* Now delete 19*
* Easy

2019 CompSci 516: Database Systems

Example Tree: Delete 19*

After deleting 19*

N L TN N TN a
‘ 5*‘ 7 ‘ 8*‘ ‘14"‘16“‘ ‘ ‘ ‘20*‘22*‘ ‘ ‘ ‘24*‘27*‘29*‘ Hw‘ 34~‘33*‘39"

RN

Example Tree: Delete 20*

Before deleting 20*

N N TN N TN a
‘ 5*‘ 7*‘ a" ‘ ‘w‘w‘ ‘ ‘ ‘20“22" ‘ ‘ ‘24*‘27*‘29-‘ ‘ ‘33-‘ 34~‘ 33" 39*‘

L]
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Example Tree: Delete 20*

RWN After deleting 20*

N N TN L L
8 O O 5 2 5 I E ES E

e <2 entries in leaf-node
¢ Redistribute

Example Tree: Delete 20*

After deleting 20*
Roo\ -step 2

{12 [
o=l 0] [l 1

0 O ) I ESS G

* Notice how middle key is copied up

Example Tree: ... And Then Delete 24*

Before deleting 24*

Root

{152 [
[ =1

P P P Pt h P —
8T O . 5 S S

Example Tree: ... And Then Delete 24*

After deleting 24*
Root -Step 1

{12 [
[l 1

P P P P PN -
8 O I R s I S ES O

* Once again, imbalance at leaf

* Can we borrow from sibling(s)?
* No-d-1andd entries (d =2)

* Need to merge
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Example Tree: ... And Then Delete 24*

After deleting 24*
ROON - Step 2

Il-l.l.l Observe “toss’ of old index entry 27

P P P Pt —
(8T O R S E A

* Imbalance at parent
because, three index 5, 13, 30

* Merge again but five pointers to leaves
* But need to “pull down” root index entry

Duke CS, Fall 2019 CompSci 516: Database Syster 4

Final Example Tree




Example of Non-leaf Re-distribution

* Anintermediate tree is shown

* In contrast to previous example, can re-distribute entry from left child of
root to right child

21-‘ mﬁ 27T strW:;ﬂ 34-1 381

— |
‘14-‘15-‘ ‘ H17T18“ ‘ Hzo'

39"
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After Re-distribution

* Intuitively, entries are re-distributed by "pushing through’ the
splitting entry in the parent node.

— It suffices to re-distribute index entry with key 20; we’ve re-distributed
17 as well for illustration.

Ro‘\

T~ ¥~ T~ T~ P NN

5

78 21‘{ ‘ HZZ" 27* 29+ ‘ ‘33' 34‘{ 38|

39*|
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Duplicates

First Option:
— The basic search algorithm assumes that all entries with the
same key value resides on the same leaf page
— If they do not fit, use overflow pages (like ISAM)
Second Option:
— Several leaf pages can contain entries with a given key value

— Search for the left most entry with a key value, and follow the
leaf-sequence pointers
— Need modification in the search algorithm
if k* = <k, rid>, several entries have to be searched
— Orinclude rid in k — becomes unique index, no duplicate

— If k* = <k, rid-list>, same solution, but if the list is long, again a
single entry can span multiple pages

Duke CS, Fall 2019 Compsc

A Note on 'Order’

e Order (d)
— denotes minimum occupancy
« replaced by physical space criterion in practice ("at least half-
full’)
- Index pages can typically hold many more entries than leaf pages

— Variable sized records and search keys mean different nodes will
contain different numbers of entries.

— Even with fixed length fields, multiple records with the same search key
value (duplicates) can lead to variable-sized data entries (if we use
Alternative (3))

Duke S, Fall 2019 Compsc

Summary

» Tree-structured indexes are ideal for range-searches, also good
for equality searches

* ISAM s a static structure
— Only leaf pages modified; overflow pages needed

— Overflow chains can degrade performance unless size of data set and
data distribution stay constant

e B+ tree is a dynamic structure
- Inserts/deletes leave tree height-balanced; log ¢ N cost
— High fanout (F) means depth rarely more than 3 or 4
— Almost always better than maintaining a sorted file

— Most widely used index in database management systems because of
its versatility.

— One of the most optimized components of a DBMS
+ Next: Hash-based index

Duke CS, Fall 2019 Compsc

Hash-based Index
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Hash-Based Indexes

* Records are grouped into buckets

— Bucket = primary page plus zero or more overflow pages

¢ Hashing function h:
— h(r) = bucket in which (data entry for) record r belongs
— h looks at the search key fields of r
— No need for “index entries” in this scheme

Duke CS, Fall 2019 CompSci 516: Database Systems
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Example: Hash-based index

Index organized file hashed on AGE, with Auxiliary index on SAL

h2(AGE) = 00
h1(AGE) = 00 i
h1(AG
AGE :

h2(SAL) = 01
Bristow, 29, 2007

Alternative 2
Employee File hashed on AGE

Alternative 1

Duke CS, Fall 2019 Compsci 516: Database Systems

File of <SAL, rid> pairs hashed on SAL

Introduction

* Hash-based indexes are best for equality
selections

— Find all records with name = “Joe”
— Cannot support range searches

— But useful in implementing relational operators like
join (later)

* Static and dynamic hashing techniques exist
— trade-offs similar to ISAM vs. B+ trees
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Static Hashing

* Pages containing data = a collection of buckets

— each bucket has one primary page, also possibly
overflow pages

— buckets contain data entries k*

0o +—— --.-
h(key) mod N
N1 L ...
Primary bucket pages Overflow pages
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Static Hashing

e # primary pages fixed

- aIIozc:jated sequentially, never de-allocated, overflow pages if
needed.

e h(k) mod N = bucket to which data entry with key k
belongs
— N =# of buckets

0o +—— ---
h(key) mod N
o e I
|\ A
Primary bucket pages Overflow pages
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Static Hashing

Hash function works on search key field of record r
— Must distribute values over range 0 ... N-1
- h(key) = (a * key + b) usually works well
«  bucket = h(key) mod N
- aand b are constants — chosen to tune h
Advantage:
- #buckets known — pages can be allocated sequentially
- search needs 1 1/0 (if no overflow page)
- insert/delete needs 2 1/0 (if no overflow page) (why 2?)
« Disadvantage:
— Long overflow chains can develop if file grows and degrade performance (data
skew)
— Or waste of space if file shrinks
* Solutions:
— keep some pages say 80% full initially
— Periodically rehash if overflow pages (can be expensive)
— or use Dynamic Hashing
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Dynamic Hashing Techniques

* Extendible Hashing
e Linear Hashing

Duke CS, Fall 2019 CompSci 516: Database Systems
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Extendible Hashing

e Consider static hashing
¢ Bucket (primary page) becomes full

e Why not re-organize file by doubling # of buckets?
- Reading and writing (double #pages) all pages is expensive

+ Idea: Use directory of pointers to buckets
- double # of buckets by doubling the directory, splitting just the
bucket that overflowed
- Directory much smaller than file, so doubling it is much cheaper
— Only one page of data entries is split
- No overflow page (new bucket, no new overflow page)
— Trick lies in how hash function is adjusted
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LocaL pEpTH” u

LOCAL DEPTH/I—"
Bucket A
GLOBAL DEPTH

Example

M
If bucket is full, split it
« allocate new page
. 10

 re-distribute N Bucket C

. . %
Suppose inserting 13 —
«  binary = 1101 15 7+ 19 Buckst D
¢ bucket 01

: DATA PAGES
* Has space, insert
Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Syster 14

Bucket A
Example comps owens |5 ]
* Directory is array of size 4 Bucket B
— each element points to a bucket m
— #bits to represent =log4=2=
global depth Bucket C
 To find bucket for search key r 7]
. DIRECTORY
— take last global depth # bits of 15 7* 19* Bucket D
h(r)
— assume h(r)=r DATA PAGES
— If h(r) =5 = binary 101
— itisin bucket pointed to by 01
Cs, Spring 2016 CompSci 516: Data Intensive Computing Syster 13
LOCAL szm/"_"
Bucket A
Example h
Insert: Bucket B
If bucket is full, split it
« allocate new page
* re-distribute Bucket C
Suppose inserting 20*
) DIRECTORY E
* binary = 10100 15 7* 19* Bucket D
¢ bucket 00
*  Already full DATA PAGES
* To split, consider last three bits of 10100
* Last two bits the same 00 — the data entry
will belong to one of these buckets
*  Third bit to distinguish them
Cs, Spring 2016 CompSci 516: Data Intensive Computing Syster 15

Global depth: Max # of bits needed to tell which bucket an entry belongs to
Exa I I l p I e Local depth: # of bits used to determine if an entry belongs to this bucket

+ also denotes whether a directory doubling is needed while splitting
* no directory doubling needed when 9* = 1001 is inserted (LD< GD)

LocaL pepTH-Z—|

GLOBAL DEPTH

Bucket A LOCAL DEPTH:

GLOBAL DEPTH

Bucket B

T

Bucket B
o1 001
10
010
Bucket C
1 . N Bucket C
100
DIRECTORY Bucket D 101 [2]
1547 19" e
110 _7 19 Bucket D
7 1m
Bucket A2
(‘splitimage' DIRECTORY Bucket A2
of Bucket A) {new “spitt mage!
of Bucket A)
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When does bucket split cause
directory doubling?

Before insert, local depth of bucket = global depth
Insert causes local depth to become > global
depth

directory is doubled by copying it over and “fixing’
pointer to split image page

Duke CS, Fall 2019 CompSci 516: Database Systems 6
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Comments on Extendible Hashing

« If directory fits in memory, equality search answered with one
disk access (to access the bucket); else two.
— 100MB file, 100 bytes/rec, 4KB page size, contains 10° records (as data

entries) and 25,000 directory elements; chances are high that directory
will fit in memory.

— Directory grows in spurts, and, if the distribution of hash values is skewed,
directory can grow large
— Multiple entries with same hash value cause problems
* Delete:

— If removal of data entry makes bucket empty, can be merged with “split
image’

— If each directory element points to same bucket as its split image, can
halve directory.
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Linear Hashing

* This is another dynamic hashing scheme
— an alternative to Extendible Hashing
* LH handles the problem of long overflow chains
— without using a directory
—handles duplicates and collisions
— very flexible w.r.t. timing of bucket splits
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Linear Hashing: Basic Idea

Use a family of hash functions ho, hy, hy, ...
- hi(key) = h(key) mod(2N)
— N =initial # buckets
- his some hash function (range is not 0 to N-1)
— If N =24, for some do, h; consists of applying h and looking at the
last d; bits, where d; =do +i
+ Note: hj(key) = h(key) mod(2%*i)
- his doubles the range of h;
« if hymaps to M buckets, h;,; maps to 2M buckets
« similar to directory doubling
- Suppose N=32,dp=5
« hy=h mod 32 (last 5 bits)
» h;=hmod 64 (last 6 bits)
« h,=h mod 128 (last 7 bits) etc.
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Linear Hashing: Rounds

* Directory avoided in LH by using overflow pages,
and choosing bucket to split round-robin

* During round Level, only hieve and hiever+1 are in
use

* The buckets from start to last are split sequentially
— this doubles the no. of buckets

* Therefore, at any point in a round, we have
— buckets that have been split
— buckets that are yet to be split
— buckets created by splits in this round

Duke CS, Fall 2019 CompSci 516: Database Systems 7

Overview of LH File

* In the middle of a round Level — originally O to Nievel

0 } Buckets split in this round:
Next - 1

| if hLever (r) is in this range, must use
Bucket to be split Next

heever + 1(r) to decide if entry is in
“split image' bucket.

Buckets that existed at the

beginning of this round: ! L if hiever (r)
this is the range of is in this range, no need
h Level

“split image' buckets:
created (through splitting
+—— of other buckets) in this round

NLeveI
Buckets 0 to Next-1 have been split
Next to Neevel yet to be split
Round ends when all Neever initial (for
round Level) buckets are split

Duke S, Fall 2019 CompSci 516: Database Systems
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Overview of LH File

* In the middle of a round Level — originally O to Nievel

0 } Buckets split in this round:
Next - 1
Bucket to be split Next

if hiever (r) is in this range, must use
heever + 1 (r) to decide if entry is in

“split image' bucket.

Buckets that existed at the

beginning of this round: ! L. if hiever (r)
this is the range of is in this range, no need
h Level
“split image' buckets
NL ' created (through splitting
eve! +— of other buckets) in this round
Buckets 0 to Next-1 have been

split

Next to Nievel yet to be split
Round ends when all Nrinitial
(for round R) buckets are split

Search: To find bucket for data entry r, find hievel(r):
If hievei(r) in range “Next to Neevel *, r belongs here.
Else, r could belong to bucket hevei(r) or hievel(r)+Nr
Apply hieversa(r) to find out

Duke CS, Fall 2019 CompSci 516: Database Systems
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Linear Hashing: Insert

* Insert: Find bucket by applying hever / Nievels1:
— If bucket to insert into is full:

1. Add overflow page and insert data entry
2. Split Next bucket and increment Next

* Note: We are going to assume that a split is “triggered’
whenever an insert causes the creation of an overflow
page, but in general, we could impose additional
conditions for better space utilization ([RG], p.380)

Duke CS, Fall 2019 Compsci 516: Database Systems

Example of Linear Hashing

Level=0, No=4=2%, do=2

" oo paces * Insert43* = 101011
_ e ho(43)=11
000 00 Ema. . Fu”
wor | 0| [F[P | vk 2i5%° ¢ Insertin an overflow page

* Need a split at Next (=0)
o0 | 10 '\ Primary ¢ Entriesin 00 is distributed to

bucket page

o | | Y 000 and 100

(This info (The actual contents
is for illustration  of the linear hashed
only!) file)
Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Syster 26

Example of Linear Hashing

Level=0, No=4=290, do=2 Level=0, No=4=240, do=2
h h PRIMARY h h PRIMARY OVERFLOW
B 0 [Next=o0 PAGES . 1 o PAGES PAGES

oo | oo | [t ] oo | 0o

l‘%t:l
001 01 EEE. 33:2 ﬁx(l:gSt 001 01 EEE.

bucket page
or | | PP o | o | BT

(This info (The actual contents
is forillustration  of the linear hashed 00 | o mﬁ..

0
only!) file)
* Nextisincremented after split
* Note the difference between overflow page of 11
and split image of 00 (000 and 100)
Duke CS, Spring 2016 CompSci 516: Data Intensive Computing Systems 27

Example of Linear Hashing

* Search for 18* = 10010
* between Next (=1) and 4
+ this bucket has not been split
* 18 should be here

Level=0, No=4=2%, do=2

h h PRIMARY OVERFLOW
+ Search for 32* = 100000  or 44* = 101100 : 0 PAGES PAGES
Between 0 and Next-1
+ Need h: 000 00

ext=1
Not all insertion triggers split 001 o1 EEE.

* Insert 37* =100101

* Hasspace ot "
Splitting at Next?
* No overflow bucket needed o011 11 E m-..

+ Just copy at the image/original 100 o mm..

Next = Nievel-1 and a split?
+ Startanew round
* Increment Level
* NextresettoO

Duke CS, Spring 2016 Compsci 516: Data Intensive Computing Systems 28

Example of Linear Hashing

Not all insertion triggers split
Insert 37* = 100101

Has space
Level=0, No=4=2%0, do=2 Level=0, No=4=2%0, do=2
h h PRIMARY OVERFLOW h h PRIMARY OVERFLOW
1 o PAGES PAGES 1 0 PAGES PAGES

001 | o1 001 | 01
o | o | [T o |
o | | S w |

°

8
o
8

Duke CS, Spring 2016 Compsci 516: Data Intensive Computing Systems 28
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Example of Linear Hashing

* Splitting at Next?
* No overflow bucket needed
+ Just copy at the image/original

insert 29* = 11101

Level=0, No=4=2%, do=2
Level=0, No=4=2%, do=2

h h PRIMARY OVERFLOW
h h PRIMARY OVERFLOW 1 o PAGES PAGES
1 0 PAGES PAGES
000 | 00

ext=1
wr | ot | T . o | o |

31 7% 11 m...
ot u Hm m-.- 011 11 .ﬁ..
w0 | oo | [safse] ] oo | o | fedeed 1]
101 | o1 H 37*
pring 2016 m Data Intensive Computing Systems 28

Example: End of a Round

insert 50* = 110010 level=, Ni=8=2%, di-3
p i * 66* 34%
(after inserting 22*, 66*, 34 PRIMARY OVERFLOW!|
- check yourself) hy |hy PAGES PAGES
Level=0, No=4=29, do=2 Next=0
PRIMARY OVERFLOW
PAGES
000 | 00 32+
0010 010 66* 18* 107 34% | [s0*
001 | o1
0011|011 43% 35% 11%
o010 | 10 __sa*urm* 34¥
011 11 EFCEE AN I CEE
10| 0o e 5% 37* 29
101 o1 5+ 37%29% 0110|110 14* 30% 22*
10| 10 o111 111

duke CS, Fall 2019 Compsci 516: Database Systems 80

LHvs. EH

* They are very similar
— hi to hi.q is like doubling the directory
— LH: avoid the explicit directory, clever choice of split
— EH: always split — higher bucket occupancy

* Uniform distribution: LH has lower average cost
— No directory level

» Skewed distribution
— Many empty/nearly empty buckets in LH
— EH may be better

Duke CS, Fall 2019 Cor

System Catalogs

For each index:
— structure (e.g., B+ tree) and search key fields
For each relation:
— name, file name, file structure (e.g., Heap file)
— attribute name and type, for each attribute
— index name, for each index
— integrity constraints
For each view:
— view name and definition
Plus statistics, authorization, buffer pool size, etc.
(described in [RG] 12.1)
Catalogs are themselves stored as relations!

Duke S, Fall 2019 Compsci 516: Database Systems

Summary

* Hash-based indexes: best for equality searches, cannot
support range searches.

* Static Hashing can lead to long overflow chains.

» Extendible Hashing avoids overflow pages by splitting a
full bucket when a new data entry is to be added to it
— Duplicates may still require overflow pages
— Directory to keep track of buckets, doubles periodically

— Can get large with skewed data; additional I/O if this does not
fit in main memory

Duke CS, Fall 2019 CompSci 516: Database Systems 83

Summary

Linear Hashing avoids directory by splitting buckets
round-robin, and using overflow pages

— Overflow pages not likely to be long

— Duplicates handled easily

For hash-based indexes, a skewed data distribution is one
in which the hash values of data entries are not uniformly
distributed

— bad

Duke S, Fall 2019 CompSci 516: Database Systems
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