
9/24/19

1

CompSci 516
Database Systems

Lecture 9 and 10
Storage

and
Index

Instructor: Sudeepa Roy

1Duke CS, Fall 2019 CompSci 516: Database Systems

Announcements
• HW1 Deadlines!

– Today: Q4
– Q5: next to next Tuesday 10/01

Duke CS, Fall 2019 2CompSci 516: Database Systems

Storage

• How are pages stored in a file?
– Heap file (no particular order of records)
– Sorted file (records sorted on any given field)

• How are records stored in a page?
– Fixed length records
– Variable length records

• How are fields stored in a record?
– Fixed length fields/records
– Variable length fields/records

Duke CS, Fall 2019 CompSci 516: Database Systems 3

The following slides
give you the basic ideas,
exact implementation may vary

Heap File Implemented as a List

• The header page id and Heap file name must be stored
someplace

• Each page contains 2 `pointers’ plus data
• But to insert a new record, we may need to scan

several pages on the free list to find one with sufficient
space

Header
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page Pages with

Free Space

Full Pages

Duke CS, Fall 2019 CompSci 516: Database Systems 4

Heap File Using a Page Directory

• The entry for a page can include the number of free
bytes on the page.

• The directory is a collection of pages
– linked list implementation of directory is just one alternative
– Much smaller than linked list of all heap file pages!

Data
Page 1

Data
Page 2

Data
Page N

Header
Page

DIRECTORY

Duke CS, Fall 2019 CompSci 516: Database Systems 5

Storage

• How are pages stored in a file?
• How are records stored in a page?

– Fixed length records
– Variable length records

• How are fields stored in a record?
– Fixed length fields/records
– Variable length fields/records

Duke CS, Fall 2019 CompSci 516: Database Systems 6

9/24/19

2

How do we arrange a collection of
records on a page?

• Each page contains several slots
– one for each record

• Record is identified by
record id or rid = <page-id, slot-number>

• Fixed-Length Records
• Variable-Length Records

• For both, there are options for
– Record formats (how to organize the fields within a record)
– Page formats (how to organize the records within a page)

Duke CS, Fall 2019 CompSci 516: Database Systems 7

Page Formats: Fixed Length Records

• Record id = <page id, slot #>
• Packed: moving records for free space management changes rid; may not be

acceptable or may be slow to reorganize
• Unpacked: use a bitmap – scan the bit array to find an empty slot
• Each page also may contain additional info like the id of the next page (not shown)

Slot 1
Slot 2

Slot N

.

N M10. . .
M ... 3 2 1

PACKED UNPACKED, BITMAP

Slot 1
Slot 2

Slot N

Free
Space

Slot M
11

number
of records

number
of slots

Duke CS, Fall 2019 CompSci 516: Database Systems 8

Limitations
of Fixed-length?

Page Formats: Variable Length Records

• Need to find a page with the right amount of space
– Too small – cannot insert
– Too large – waste of space

• if a record is deleted, need to move the records so that all
free space is contiguous
– need ability to move records within a page

– Changes record id

• Can maintain a directory of slots (next slide)

Duke CS, Fall 2019 CompSci 516: Database Systems 9

Page Formats: Variable Length Records
Directory of Slots

• Each slot contains <record-offset, record-length>
– deletion = set record-offset to -1

• Record-id rid = <page, slot-in-directory> remains unchanged
– Can move records on page without changing rid

– so, attractive for fixed-length records too
Duke CS, Fall 2019 CompSci 516: Database Systems 10

Page i
Rid = (i,N)

Rid = (i,2)

Rid = (i,1)

Pointer
to start
of free
space

SLOT DIRECTORY

N . . . 2 1
20 16 24 N

slots

Storage

• How are pages stored in a file?
• How are records stored in a page?

– Fixed length records
– Variable length records

• How are fields stored in a record?
– Fixed length fields/records
– Variable length fields/records

Duke CS, Fall 2019 CompSci 516: Database Systems 11

Record Formats: Fixed Length

• Each field has a fixed length
– for all records
– the number of fields is also fixed
– fields can be stored consecutively

• Information about field types same for all records in a file
– stored in system catalogs

• Finding i-th field does not require scan of record
– given the address of the record, address of a field can be obtained

easily

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2

Duke CS, Fall 2019 CompSci 516: Database Systems 12

9/24/19

3

Record Formats: Variable Length
• Cannot use fixed-length slots for records
• Two alternative formats (note: # fields is fixed for relational data)

• Second offers direct access to i-th field, efficient storage of nulls (special don’t
know value); small directory overhead

4 $ $ $ $

Field
Count

Fields Delimited by Special Symbols

F1 F2 F3 F4

F1 F2 F3 F4

Array of Field Offsets

1. use delimiters

2. use offsets at the
start of each record

Duke CS, Fall 2019 CompSci 516: Database Systems 13

Main takeaways: storage

• Disk is slow but large and persistent
• Main memory or buffer is fast but small and

not persistent
• If a page is edited in memory, needs to be

written back to disk
• Unit of cost = page I/O (read and write)
• A record (= tuple) is accessed by rid (record

id): gives the address of the page and the slot

Duke CS, Fall 2019 CompSci 516: Database Systems 14

Indexes

Duke CS, Fall 2019 CompSci 516: Database Systems 15

Indexes

• An index on a file speeds up selections on the
search key fields for the index
– Any subset of the fields of a relation can be the search

key for an index on the relation.
– “Search key” is not the same as “key”!

• An index contains a collection of data entries, and
supports efficient retrieval of all data entries k*
with a given key value k
– Why multiple entries for a given k?

Duke CS, Fall 2019 CompSci 516: Database Systems 16

Remember: Terminology

• Index search key (key): k
– Used to search a record

• Data entry : k*
– Pointed to by k
– Contains record id(s) or record itself

• Records or data
– Actual tuples
– Pointed to by record ids

Duke CS, Fall 2019 CompSci 516: Database Systems 17

INDEX
does this

Alternatives for Data Entry k* in Index k

• In a data entry k* we can store:
1. (Alternative 1) The actual data record with key value k,

or
2. (Alternative 2) <k, rid>

• rid = record of data record with search key value k, or

3. (Alternative 3) <k, rid-list>
• list of record ids of data records with search key k>

• Choice of alternative for data entries is orthogonal
to the indexing technique used to locate data
entries with a given key value k

Duke CS, Fall 2019 CompSci 516: Database Systems 18

Advantages/
Disadvantages?

9/24/19

4

Alternatives for Data Entries: Alternative 1

• Index structure is a file organization for data records
– instead of a Heap file or sorted file

• At most one index can use Alternative 1
– Otherwise, data records are duplicated, leading to redundant storage and

potential inconsistency

• Problem with Alt-1: If data records are very large, #pages with
data entries is high

– Implies size of auxiliary information in the index is also large

• In a data entry k* we can store:
1. The actual data record with key value k
2. <k, rid>

• rid = record of data record with search key value k

3. <k, rid-list>
• list of record ids of data records with search key k>

Duke CS, Fall 2019 CompSci 516: Database Systems 19

Alternatives for Data Entries: Alternative 2, 3

• Data entries typically much smaller than data records
– So, better than Alternative 1 with large data records
– Especially if search keys are small.

• Alternative 3 more compact than Alternative 2
– but leads to variable-size data entries even if search keys have

fixed length.

• In a data entry k* we can store:
1. The actual data record with key value k
2. <k, rid>

• rid = record of data record with search key value k

3. <k, rid-list>
• list of record ids of data records with search key k>

Duke CS, Fall 2019 CompSci 516: Database Systems 20

Index Classification

• Primary vs. secondary
• Clustered vs. unclustered
• Tree-based vs. Hash-based

Duke CS, Fall 2019 CompSci 516: Database Systems 21

Primary vs. Secondary Index

• If search key contains primary key, then called
primary index, otherwise secondary
– Unique index: Search key contains a candidate key

• Duplicate data entries:
– if they have the same value of search key field k
– Primary/unique index never has a duplicate
– Other secondary index can have duplicates

Duke CS, Fall 2019 CompSci 516: Database Systems 22

Clustered vs. Unclustered Index

• If order of data records in a file is the same as, or
`close to’, order of data entries in an index, then
clustered, otherwise unclustered

• A file can be clustered on at most one search key

• Cost of retrieving data records (range queries) through
index varies greatly based on whether index is
clustered or not

Duke CS, Fall 2019 CompSci 516: Database Systems 23

• Suppose that Alternative (2) is used for data entries, and that the data records are
stored in a Heap file

• To build clustered index, first sort the Heap file
– with some free space on each page for future inserts
– Overflow pages may be needed for inserts
– Thus, data records are `close to’, but not identical to, sorted

Index entries

Data entries

direct search for

(Index File)
(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

Duke CS, Fall 2019 CompSci 516: Database Systems 24

Clustered vs. Unclustered Index

9/24/19

5

Methods for indexing

• Tree-based
• Hash-based

Duke CS, Fall 2019 CompSci 516: Database Systems 25

Tree-based Index
and B+-Tree

Duke CS, Fall 2019 CompSci 516: Database Systems 26

Range Searches

• ``Find all students with gpa > 3.0’’
– If data is in sorted file, do “binary search” to find

first such student, then scan to find others.
– Cost of binary search can be quite high.

Duke CS, Fall 2019 CompSci 516: Database Systems 27

Index file format

• Simple idea: Create an “index file”
– <first-key-on-page, pointer-to-page>, sorted on keys

Can do binary search on (smaller) index file
but may still be expensive: apply this idea repeatedly

Page 1 Page 2 Page NPage 3 Data File

k2 kNk1 Index File

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Duke CS, Fall 2019 CompSci 516: Database Systems 28

Indexed Sequential Access Method
(ISAM)

• Leaf-pages contain data entry – also some overflow pages
• DBMS organizes layout of the index – a static structure
• If a number of inserts to the same leaf, a long overflow chain can

be created
– affects the performance

Duke CS, Fall 2019 CompSci 516: Database Systems 29

Leaf pages contain data entries.

Non-leaf
Pages

Pages
Overflow

page Primary pages

Leaf

B+ Tree
• Most Widely Used Index: a dynamic structure
• Insert/delete at log F N cost = height of the tree (cost = I/O)

– F = fanout, N = no. of leaf pages
– tree is maintained height-balanced

• Minimum 50% occupancy
– Each node contains d <= m <= 2d entries
– Root contains 1 <= m <= 2d entries
– The parameter d is called the order of the tree

• Supports equality and range-searches efficiently

Duke CS, Fall 2019 CompSci 516: Database Systems 30

Index Entries

Data Entries
("Sequence set")

(Direct search)The index-file

9/24/19

6

B+ Tree Indexes

• Leaf pages contain data entries, and are chained (prev & next)
• Non-leaf pages have index entries; only used to direct searches:

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages

Pages
(Sorted by search key)

Leaf

Duke CS, Fall 2019 CompSci 516: Database Systems 31

Example B+ Tree

• Search begins at root, and key comparisons
direct it to a leaf

• Search for 5*, 15*, all data entries >= 24* ...
Based on the search for 15*, we know
it is not in the tree!Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Duke CS, Fall 2019 CompSci 516: Database Systems 32

Example B+ Tree

• Find
– 28*?
– 29*?
– All > 15* and < 30*

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Entries < 17 Entries >= 17

Note how data entries
in leaf level are sorted

Duke CS, Fall 2019 CompSci 516: Database Systems 33

B+ Trees in Practice

• Typical order: d = 100. Typical fill-factor: 67%
– average fanout F = 133

• Typical capacities:
– Height 4: 1334 = 312,900,700 records
– Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool:
– Level 1 = 1 page = 8 Kbytes
– Level 2 = 133 pages = 1 Mbyte
– Level 3 = 17,689 pages = 133 MBytes

Duke CS, Fall 2019 CompSci 516: Database Systems 34

Inserting a Data Entry into a B+ Tree

• Find correct leaf L
• Put data entry onto L

– If L has enough space, done
– Else, must split L

• into L and a new node L2
• Redistribute entries evenly, copy up middle key.
• Insert index entry pointing to L2 into parent of L.

• This can happen recursively
– To split index node, redistribute entries evenly, but push

up middle key
• Contrast with leaf splits

• Splits “grow” tree; root split increases height.
– Tree growth: gets wider or one level taller at top.

Duke CS, Fall 2019 CompSci 516: Database Systems 35

See this slide later,
First, see examples on the next
few slides

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Inserting 8* into Example B+ Tree

2* 3* 5* 7* 8*

5
Entry to be inserted in parent node.
(Note that 5 is
continues to appear in the leaf.)

s copied up and

• Copy-up: 5 appears
in leaf and the level
above

• Observe how
minimum
occupancy is
guaranteed

STEP-1

Duke CS, Fall 2019 CompSci 516: Database Systems 36

9/24/19

7

• Note difference between
copy-up and push-up

• What is the reason for this
difference?

• All data entries must
appear as leaves

– (for easy range search)
• no such requirement for

indexes
– (so avoid redundancy)

appears once in the index. Contrast

5 24 30

17

13

Entry to be inserted in parent node.
(Note that 17 is pushed up and only

this with a leaf split.)

Root

17 24 30

2* 3* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Inserting 8* into Example B+ Tree

STEP-2

5* 7* 8*

Need to split parent

5

Example B+ Tree After Inserting 8*

• Notice that root was split, leading to increase in height.

• In this example, we can avoid split by re-distributing entries (insert 8 to
the 2nd leaf node from left and copy it up instead of 13)

• however, this is usually not done in practice – since need to access 1-2
extra pages always (for two siblings), and average occupancy may
remain unaffected as the file grows

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Duke CS, Fall 2019 CompSci 516: Database Systems 38

Deleting a Data Entry from a B+ Tree

• Start at root, find leaf L where entry belongs
• Remove the entry

– If L is at least half-full, done!
– If L has only d-1 entries,

• Try to re-distribute, borrowing from sibling (adjacent node with same
parent as L)

• If re-distribution fails, merge L and sibling

• If merge occurred, must delete entry (pointing to L or
sibling) from parent of L

• Merge could propagate to root, decreasing height

Each non-root node contains d <= m <= 2d entries

Duke CS, Fall 2019 CompSci 516: Database Systems 39

See this slide later,
First, see examples on the next
few slides

Example Tree: Delete 19*

• We had inserted 8*
• Now delete 19*
• Easy

Duke CS, Fall 2019 CompSci 516: Database Systems 40

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Before deleting 19*

Example Tree: Delete 19*

Duke CS, Fall 2019 CompSci 516: Database Systems 41

2* 3*

Root

17

24 30

14* 16* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

After deleting 19*

Example Tree: Delete 20*

Duke CS, Fall 2019 CompSci 516: Database Systems 42

2* 3*

Root

17

24 30

14* 16* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Before deleting 20*

9/24/19

8

Example Tree: Delete 20*

• < 2 entries in leaf-node
• Redistribute

Duke CS, Fall 2019 CompSci 516: Database Systems 43

2* 3*

Root

17

24 30

14* 16* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

After deleting 20*
- step 1

• Notice how middle key is copied up

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Example Tree: Delete 20*

After deleting 20*
- step 2

Duke CS, Fall 2019 CompSci 516: Database Systems 44

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Before deleting 24*

Example Tree: ... And Then Delete 24*

Duke CS, Fall 2019 CompSci 516: Database Systems 45

• Once again, imbalance at leaf
• Can we borrow from sibling(s)?
• No – d-1 and d entries (d = 2)
• Need to merge

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22*

27

27* 29*

After deleting 24*
- Step 1

Example Tree: ... And Then Delete 24*

Duke CS, Fall 2019 CompSci 516: Database Systems 46

• Imbalance at parent
• Merge again
• But need to “pull down” root index entry

2* 3*

Root

17

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22*

30

27* 29*

After deleting 24*
- Step 2

Example Tree: ... And Then Delete 24*

• Observe `toss’ of old index entry 27

Duke CS, Fall 2019 CompSci 516: Database Systems 47

because, three index 5, 13, 30
but five pointers to leaves

Final Example Tree

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root
30135 17

Duke CS, Fall 2019 CompSci 516: Database Systems 48

9/24/19

9

Example of Non-leaf Re-distribution

• An intermediate tree is shown
• In contrast to previous example, can re-distribute entry from left child of

root to right child

Root

135 17 20

22

30

14* 16* 17* 18* 20* 33* 34* 38* 39*22* 27* 29*21*7*5* 8*3*2*

Duke CS, Fall 2019 CompSci 516: Database Systems 49

After Re-distribution
• Intuitively, entries are re-distributed by `pushing through’ the

splitting entry in the parent node.
– It suffices to re-distribute index entry with key 20; we’ve re-distributed

17 as well for illustration.

14* 16* 33* 34* 38* 39*22* 27* 29*17* 18* 20* 21*7*5* 8*2* 3*

Root

135

17

3020 22

Duke CS, Fall 2019 CompSci 516: Database Systems 50

Duplicates

• First Option:
– The basic search algorithm assumes that all entries with the

same key value resides on the same leaf page
– If they do not fit, use overflow pages (like ISAM)

• Second Option:
– Several leaf pages can contain entries with a given key value
– Search for the left most entry with a key value, and follow the

leaf-sequence pointers
– Need modification in the search algorithm

• if k* = <k, rid>, several entries have to be searched
– Or include rid in k – becomes unique index, no duplicate
– If k* = <k, rid-list>, same solution, but if the list is long, again a

single entry can span multiple pages

Duke CS, Fall 2019 CompSci 516: Database Systems 51

A Note on `Order’

• Order (d)
– denotes minimum occupancy

• replaced by physical space criterion in practice (`at least half-
full’)

– Index pages can typically hold many more entries than leaf pages
– Variable sized records and search keys mean different nodes will

contain different numbers of entries.
– Even with fixed length fields, multiple records with the same search key

value (duplicates) can lead to variable-sized data entries (if we use
Alternative (3))

Duke CS, Fall 2019 CompSci 516: Database Systems 52

Summary
• Tree-structured indexes are ideal for range-searches, also good

for equality searches
• ISAM is a static structure

– Only leaf pages modified; overflow pages needed
– Overflow chains can degrade performance unless size of data set and

data distribution stay constant

• B+ tree is a dynamic structure
– Inserts/deletes leave tree height-balanced; log F N cost
– High fanout (F) means depth rarely more than 3 or 4
– Almost always better than maintaining a sorted file
– Most widely used index in database management systems because of

its versatility.
– One of the most optimized components of a DBMS

• Next: Hash-based index

Duke CS, Fall 2019 CompSci 516: Database Systems 53

Hash-based Index

Duke CS, Fall 2019 CompSci 516: Database Systems 54

9/24/19

10

Hash-Based Indexes

• Records are grouped into buckets
– Bucket = primary page plus zero or more overflow pages

• Hashing function h:
– h(r) = bucket in which (data entry for) record r belongs
– h looks at the search key fields of r
– No need for “index entries” in this scheme

Duke CS, Fall 2019 CompSci 516: Database Systems 55

Example: Hash-based index

Duke CS, Fall 2019 CompSci 516: Database Systems 56

h1
AGE

Smith, 44, 3000
Jones, 40, 6003
Tracy, 44, 5004

Ashby, 25, 3000
Basu, 33, 4003

Bristow, 29, 2007

Cass, 50, 5004
Daniels, 22, 6003

h1(AGE) = 00

h1(AGE) = 01

h1(AGE) = 10

h2

3000
3000
5004
5004

4003
2007
6003
6003

h2(SAL) = 01

h2(AGE) = 00

File of <SAL, rid> pairs hashed on SAL

Employee File hashed on AGE

Index organized file hashed on AGE, with Auxiliary index on SAL

Alternative 1

Alternative 2

Introduction

• Hash-based indexes are best for equality
selections
– Find all records with name = “Joe”
– Cannot support range searches
– But useful in implementing relational operators like

join (later)

• Static and dynamic hashing techniques exist
– trade-offs similar to ISAM vs. B+ trees

Duke CS, Fall 2019 CompSci 516: Database Systems 57

Static Hashing
• Pages containing data = a collection of buckets

– each bucket has one primary page, also possibly
overflow pages

– buckets contain data entries k*

h(key) mod N

h
key

Primary bucket pages Overflow pages

2
0

N-1

Duke CS, Fall 2019 CompSci 516: Database Systems 58

Static Hashing
• # primary pages fixed

– allocated sequentially, never de-allocated, overflow pages if
needed.

• h(k) mod N = bucket to which data entry with key k
belongs
– N = # of buckets

h(key) mod N

h
key

Primary bucket pages Overflow pages

2
0

N-1

Duke CS, Fall 2019 CompSci 516: Database Systems 59

Static Hashing
• Hash function works on search key field of record r

– Must distribute values over range 0 ... N-1
– h(key) = (a * key + b) usually works well

• bucket = h(key) mod N
– a and b are constants – chosen to tune h

• Advantage:
– #buckets known – pages can be allocated sequentially
– search needs 1 I/O (if no overflow page)
– insert/delete needs 2 I/O (if no overflow page) (why 2?)

• Disadvantage:
– Long overflow chains can develop if file grows and degrade performance (data

skew)
– Or waste of space if file shrinks

• Solutions:
– keep some pages say 80% full initially
– Periodically rehash if overflow pages (can be expensive)
– or use Dynamic Hashing

Duke CS, Fall 2019 CompSci 516: Database Systems 60

9/24/19

11

Dynamic Hashing Techniques

• Extendible Hashing
• Linear Hashing

Duke CS, Fall 2019 CompSci 516: Database Systems 61

Extendible Hashing
• Consider static hashing
• Bucket (primary page) becomes full

• Why not re-organize file by doubling # of buckets?
– Reading and writing (double #pages) all pages is expensive

• Idea: Use directory of pointers to buckets
– double # of buckets by doubling the directory, splitting just the

bucket that overflowed
– Directory much smaller than file, so doubling it is much cheaper
– Only one page of data entries is split
– No overflow page (new bucket, no new overflow page)
– Trick lies in how hash function is adjusted

Duke CS, Fall 2019 CompSci 516: Database Systems 62

Example
• Directory is array of size 4

– each element points to a bucket
– #bits to represent = log 4 = 2 =

global depth

• To find bucket for search key r
– take last global depth # bits of

h(r)
– assume h(r) = r
– If h(r) = 5 = binary 101
– it is in bucket pointed to by 01

00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

Duke%CS,%Spring%2016 CompSci%516:%Data%Intensive%Computing%Systems 6213

Example
Insert:
• If bucket is full, split it
• allocate new page
• re-distribute

Suppose inserting 13*
• binary = 1101
• bucket 01
• Has space, insert

00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

Duke%CS,%Spring%2016 CompSci%516:%Data%Intensive%Computing%Systems 6214

Example
Insert:
• If bucket is full, split it
• allocate new page
• re-distribute

Suppose inserting 20*
• binary = 10100
• bucket 00
• Already full
• To split, consider last three bits of 10100
• Last two bits the same 00 – the data entry

will belong to one of these buckets
• Third bit to distinguish them

13*00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

Duke%CS,%Spring%2016 CompSci%516:%Data%Intensive%Computing%Systems 6215

20*

00

01
10
11

2 2

2

2

LOCAL DEPTH 2

2

DIRECTORY

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

1* 5* 21*13*

32*16*

10*

15* 7* 19*

4* 12*

19*

2

2

2

000

001

010

011
100

101

110
111

3

3

3
DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(new `split image'

of Bucket A)

32*

1* 5* 21* 13*

16*

10*

15* 7*

4* 20*12*

LOCAL DEPTH

GLOBAL DEPTH

Duke CS, Fall 2019 CompSci 516: Database Systems 66

Global depth: Max # of bits needed to tell which bucket an entry belongs to

Local depth: # of bits used to determine if an entry belongs to this bucket
• also denotes whether a directory doubling is needed while splitting
• no directory doubling needed when 9* = 1001 is inserted (LD< GD)

Example

9/24/19

12

When does bucket split cause
directory doubling?

• Before insert, local depth of bucket = global depth
• Insert causes local depth to become > global

depth
• directory is doubled by copying it over and `fixing’

pointer to split image page

Duke CS, Fall 2019 CompSci 516: Database Systems 67

Comments on Extendible Hashing
• If directory fits in memory, equality search answered with one

disk access (to access the bucket); else two.
– 100MB file, 100 bytes/rec, 4KB page size, contains 106 records (as data

entries) and 25,000 directory elements; chances are high that directory
will fit in memory.

– Directory grows in spurts, and, if the distribution of hash values is skewed,
directory can grow large

– Multiple entries with same hash value cause problems

• Delete:
– If removal of data entry makes bucket empty, can be merged with `split

image’
– If each directory element points to same bucket as its split image, can

halve directory.

Duke CS, Fall 2019 CompSci 516: Database Systems 68

Linear Hashing

• This is another dynamic hashing scheme
– an alternative to Extendible Hashing

• LH handles the problem of long overflow chains
– without using a directory
– handles duplicates and collisions
– very flexible w.r.t. timing of bucket splits

Duke CS, Fall 2019 CompSci 516: Database Systems 69

Linear Hashing: Basic Idea
• Use a family of hash functions h0, h1, h2, ...

– hi(key) = h(key) mod(2iN)
– N = initial # buckets
– h is some hash function (range is not 0 to N-1)
– If N = 2d0, for some d0, hi consists of applying h and looking at the

last di bits, where di = d0 + i
• Note: hi(key) = h(key) mod(2d0+i)

– hi+1 doubles the range of hi
• if hi maps to M buckets, hi+1 maps to 2M buckets
• similar to directory doubling

– Suppose N = 32, d0 = 5
• h0 = h mod 32 (last 5 bits)
• h1 = h mod 64 (last 6 bits)
• h2 = h mod 128 (last 7 bits) etc.

Duke CS, Fall 2019 CompSci 516: Database Systems 70

Linear Hashing: Rounds

• Directory avoided in LH by using overflow pages,
and choosing bucket to split round-robin

• During round Level, only hLevel and hLevel+1 are in
use

• The buckets from start to last are split sequentially
– this doubles the no. of buckets

• Therefore, at any point in a round, we have
– buckets that have been split
– buckets that are yet to be split
– buckets created by splits in this round

Duke CS, Fall 2019 CompSci 516: Database Systems 71

Overview of LH File

Levelh

Buckets that existed at the
beginning of this round:

this is the range of

NextBucket to be split
if hLevel (r)
Buckets split in this round:

is in this range, must use

`split image' bucket.
hLevel + 1 (r) to decide if entry is in

`split image' buckets:
created (through splitting
of other buckets) in this round

Duke CS, Fall 2019 CompSci 516: Database Systems 72

Next - 1

• Buckets 0 to Next-1 have been split
• Next to NLevel yet to be split
• Round ends when all NLevel initial (for

round Level) buckets are split

0

NLevel

is in this range, no need
if hLevel (r)

• In the middle of a round Level – originally 0 to NLevel

9/24/19

13

Overview of LH File
• In the middle of a round Level – originally 0 to NLevel

Levelh

Buckets that existed at the
beginning of this round:

this is the range of

NextBucket to be split
if hLevel (r)
Buckets split in this round:

is in this range, must use

`split image' bucket.
hLevel + 1 (r) to decide if entry is in

`split image' buckets:
created (through splitting
of other buckets) in this round

Duke CS, Fall 2019 CompSci 516: Database Systems 73

Next - 1

• Buckets 0 to Next-1 have been
split

• Next to NLevel yet to be split
• Round ends when all NR initial

(for round R) buckets are split

0

NLevel

is in this range, no need
if hLevel (r)

• Search: To find bucket for data entry r, find hLevel(r):
• If hLevel(r) in range `Next to NLevel ’ , r belongs here.

• Else, r could belong to bucket hLevel(r) or hLevel(r)+NR

• Apply hLevel+1(r) to find out

Linear Hashing: Insert

• Insert: Find bucket by applying hLevel / hLevel+1:
– If bucket to insert into is full:

1. Add overflow page and insert data entry
2. Split Next bucket and increment Next

• Note: We are going to assume that a split is `triggered’
whenever an insert causes the creation of an overflow
page, but in general, we could impose additional
conditions for better space utilization ([RG], p.380)

Duke CS, Fall 2019 CompSci 516: Database Systems 74

Example of Linear Hashing

0
hh

1

(This info
is for illustration
only!)

Level=0, N0 = 4 = 2d0 , d0=2

00

01

10

11

000

001

010

011

(The actual contents
of the linear hashed
file)

Next=0

PRIMARY
PAGES

Data entry r
with h(r)=5

Primary
bucket page

44* 36*32*

25*9* 5*

14* 18*10*30*

31* 35* 11*7*

• Insert 43* = 101011
• h0(43) = 11
• Full
• Insert in an overflow page
• Need a split at Next (=0)
• Entries in 00 is distributed to

000 and 100

Duke%CS,%Spring%2016 CompSci%516:%Data%Intensive%Computing%Systems 26

Example of Linear Hashing

0
hh

1

(This info
is for illustration
only!)

00

01

10

11

000

001

010

011

(The actual contents
of the linear hashed
file)

Next=0

PRIMARY
PAGES

Data entry r
with h(r)=5

Primary
bucket page

44* 36*32*

25*9* 5*

14* 18*10*30*

31* 35* 11*7*

0
hh

1

00

01

10

11

000

001

010

011

Next=1

PRIMARY
PAGES

44* 36*

32*

25*9* 5*

14* 18*10*30*

31* 35* 11*7*

OVERFLOW
PAGES

43*

00100

• Next is incremented after split
• Note the difference between overflow page of 11

and split image of 00 (000 and 100)

Duke%CS,%Spring%2016 CompSci%516:%Data%Intensive%Computing%Systems 27

Level=0, N0 = 4 = 2d0 , d0=2 Level=0, N0 = 4 = 2d0 , d0=2

Example of Linear Hashing

0
hh

1

00

01

10

11

000

001

010

011

Next=1

PRIMARY
PAGES

44* 36*

32*

25*9* 5*

14* 18*10*30*

31* 35* 11*7*

OVERFLOW
PAGES

43*

00100

• Search for 18* = 10010
• between Next (=1) and 4
• this bucket has not been split

• 18 should be here

• Search for 32* = 100000 or 44* = 101100
• Between 0 and Next-1

• Need h1

• Not all insertion triggers split
• Insert 37* = 100101
• Has space

• Splitting at Next?
• No overflow bucket needed
• Just copy at the image/original

• Next = Nlevel-1 and a split?
• Start a new round
• Increment Level
• Next reset to 0

Duke%CS,%Spring%2016 CompSci%516:%Data%Intensive%Computing%Systems 28

Level=0, N0 = 4 = 2d0 , d0=2

Example of Linear Hashing

0
hh

1

00

01

10

11

000

001

010

011

Next=1

PRIMARY
PAGES

44* 36*

32*

25*9* 5*

14* 18*10*30*

31* 35* 11*7*

OVERFLOW
PAGES

43*

00100

• Not all insertion triggers split
• Insert 37* = 100101

• Has space

Duke%CS,%Spring%2016 CompSci%516:%Data%Intensive%Computing%Systems 28

Level=0, N0 = 4 = 2d0 , d0=2

0
hh

1

00

01

10

11

000

001

010

011

Next=1

PRIMARY
PAGES

44* 36*

32*

25*9* 5*

14* 18*10*30*

31* 35* 11*7*

OVERFLOW
PAGES

43*

00100

Level=0, N0 = 4 = 2d0 , d0=2

37*

9/24/19

14

Example of Linear Hashing

0
hh

1

00

01

10

11

000

001

010

011

Next=1

PRIMARY
PAGES

44* 36*

32*

25*9* 5*

14* 18*10*30*

31* 35* 11*7*

OVERFLOW
PAGES

43*

00100

• Splitting at Next?
• No overflow bucket needed
• Just copy at the image/original

Duke%CS,%Spring%2016 CompSci%516:%Data%Intensive%Computing%Systems 28

Level=0, N0 = 4 = 2d0 , d0=2

0
hh

1

00

01

10

11

000

001

010

011

Next=2

PRIMARY
PAGES

44* 36*

32*

25*9*

14* 18*10*30*

31* 35* 11*7*

OVERFLOW
PAGES

43*

00100

Level=0, N0 = 4 = 2d0 , d0=2

37*

insert 29* = 11101

5* 37*01101 29*

Example: End of a Round

0hh1

22*

00

01

10

11

000

001

010

011

00100

Next=3

01

10

101

110

PRIMARY
PAGES

OVERFLOW
PAGES

32*

9*

5*

14*

25*

66* 10*18* 34*

35*31* 7* 11* 43*

44*36*

37*29*

30*

0hh 1

37*

00

01

10

11

000

001

010

011

00100

10

101

110

Next=0

111

11

PRIMARY
PAGES

OVERFLOW
PAGES

11

32*

9* 25*

66* 18* 10* 34*

35* 11*

44* 36*

5* 29*

43*

14* 30* 22*

31* 7*

50*

Duke CS, Fall 2019 CompSci 516: Database Systems 80

Level=0, N0= 4 = 2d0 , d0=2

Level=1, N1= 8 = 2d1 , d1=3

(after inserting 22*, 66*, 34*
- check yourself)

insert 50* = 110010

h 2

0000

0001

0010

0011

0100

0101

0110

0111

LH vs. EH

• They are very similar
– hi to hi+1 is like doubling the directory
– LH: avoid the explicit directory, clever choice of split
– EH: always split – higher bucket occupancy

• Uniform distribution: LH has lower average cost
– No directory level

• Skewed distribution
– Many empty/nearly empty buckets in LH
– EH may be better

Duke CS, Fall 2019 CompSci 516: Database Systems 81

System Catalogs

• For each index:
– structure (e.g., B+ tree) and search key fields

• For each relation:
– name, file name, file structure (e.g., Heap file)
– attribute name and type, for each attribute
– index name, for each index
– integrity constraints

• For each view:
– view name and definition

• Plus statistics, authorization, buffer pool size, etc.
• (described in [RG] 12.1)

Catalogs are themselves stored as relations!
Duke CS, Fall 2019 CompSci 516: Database Systems 82

Summary

• Hash-based indexes: best for equality searches, cannot
support range searches.

• Static Hashing can lead to long overflow chains.
• Extendible Hashing avoids overflow pages by splitting a

full bucket when a new data entry is to be added to it
– Duplicates may still require overflow pages
– Directory to keep track of buckets, doubles periodically
– Can get large with skewed data; additional I/O if this does not

fit in main memory

Duke CS, Fall 2019 CompSci 516: Database Systems 83

Summary

• Linear Hashing avoids directory by splitting buckets
round-robin, and using overflow pages
– Overflow pages not likely to be long
– Duplicates handled easily

• For hash-based indexes, a skewed data distribution is one
in which the hash values of data entries are not uniformly
distributed
– bad

Duke CS, Fall 2019 CompSci 516: Database Systems 84

