Bayesian games and their use in auctions

Vincent Conitzer
conitzer@cs.duke.edu

What is mechanism design?

- In mechanism design, we get to design the game (or mechanism)
- e.g. the rules of the auction, marketplace, election, ...
- Goal is to obtain good outcomes when agents behave strategically (game-theoretically)
- Mechanism design often considered part of game theory
- 2007 Nobel Prize in Economics!
- 2012 Prize also related
- Before we get to mechanism design, first we need to know how to evaluate mechanisms

Example: (single-item) auctions

- Sealed-bid auction: every bidder submits bid in a sealed envelope
- First-price sealed-bid auction: highest bid wins, pays amount of own bid
- Second-price sealed-bid auction: highest bid wins, pays amount of second-highest bid

Which auction generates more revenue?

- Each bid depends on
- bidder's true valuation for the item (utility = valuation - payment),
- bidder's beliefs over what others will bid (\rightarrow game theory),
- and... the auction mechanism used
- In a first-price auction, it does not make sense to bid your true valuation
- Even if you win, your utility will be $0 .$. .
- In a second-price auction, (we will see next that) it always makes sense to bid your true valuation

a likely outcome for the first-price mechanism	bid 1: $\$ 5$ bid 2: $\$ 4$ 0

a likely outcome for the second- price mechanism	bid 2: $\$ 510$
0	bid 3: $\$ 1$

Bidding truthfully is optimal in the Vickrey auction!

- What should a bidder with value v bid?
b = highest bid among otherbidders

Option 1: Win
the item at price
b, get utility v - b

> Would like to win if
> and only if $v-b>0$
> - but bidding truthfully accomplishes this!

Option 2: Lose the item, get
utility 0
We say the Vickrey auction is strategy-proof

Collusion in the Vickrey auction

- Example: two colluding bidders
$v_{1}=$ first colluder's true valuation
$\mathrm{v}_{2}=$ second - price colluder 1 would pay when
colluder's true colluders bid truthfully
valuation
b = highest bid
among other bidders colluder 2 does not bid

Attempt \#1 at using game theory to predict auction outcome

- First-price sealed-bid (or Dutch) auction
- Bidder 1 has valuation 4, bidder 2 has val. 2
- Discretized version, random tie-breaking

	$\mathbf{0}$				$\mathbf{1}$
$\mathbf{0}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$		
	2,1	0,1	0,0	$0,-1$	$0,-2$
$\mathbf{1}$	3,0	$1.5, .5$	0,0	$0,-1$	$0,-2$
$\mathbf{2}$	2,0	2,0	1,0	$0,-1$	$0,-2$
$\mathbf{3}$	1,0	1,0	1,0	$.5,-.5$	$0,-2$
$\mathbf{4}$	0,0	0,0	0,0	0,0	$0,-1$

-What aspect(s) of auctions is this missing?

Bayesian games

- In a Bayesian game a player's utility depends on that player's type as well as the actions taken in the game
- Notation: θ_{i} is player i's type, drawn according to some distribution from set of types Θ_{i}
- Each player knows/learns its own type, not those of the others, before choosing action
- Pure strategy s_{i} is a mapping from Θ_{i} to A_{i} (where A_{i} is i's set of actions)
- In general players can also receive signals about other players' utilities; we will not go into this

Converting Bayesian games to normal form

row player U type 1 (prob. 0.5) D	L	R	column player type 1 (prob. 0.5)	L R	
	4	6		4	6
	2	4		4	6
	L	R		L	R
row player U	2	4	column player U	2	2
type 2 (prob. 0.5) D	4	2	type 2 (prob. 0.5) D	4	2

	type 1: L type 1: L type 1: R type 1: R type 2: L type 2: R type 2: L type 2: R			
type 1: U type 2 : U	3, 3	4, 3	4, 4	5, 4
type 1: U type 2: D	4, 3.5	4, 3	4, 4.5	4, 4
type 1: D type 2: U	2, 3.5	3, 3	3, 4.5	4, 4
type 1: D type 2: D	3, 4	3, 3	3, 5	3, 4

exponential blowup in size

Bayes-Nash equilibrium

- A profile of strategies is a Bayes-Nash equilibrium if it is a Nash equilibrium for the normal form of the game
- Minor caveat: each type should have >0 probability
- Alternative definition: for every i, for every type θ_{i}, for every alternative action a_{i}, we must have:
$\Sigma_{\theta_{-i}} P\left(\theta_{-i}\right) u_{i}\left(\theta_{i}, \sigma_{i}\left(\theta_{i}\right), \sigma_{-i}\left(\theta_{-i}\right)\right) \geq$
$\Sigma_{\theta_{-i}} P\left(\theta_{-i}\right) u_{i}\left(\theta_{i}, a_{i}, \sigma_{-i}\left(\theta_{-i}\right)\right)$

First-price sealed-bid auction BNE

- Suppose every bidder (independently) draws a valuation from [0, 1]
What is a Bayes-Nash equilibrium for this?
Say a bidder with value v_{i} bids $v_{i}(n-1) / n$
Claim: this is an equilibrium!
Proof: suppose all others use this strategy
For a bid $b<(n-1) / n$, the probability of winning is (bn/(n-1)) $)^{n-1}$, so the expected value is $\left(v_{i}-b\right)(b n /(n-1))^{n-1}$ Derivative w.r.t. b is $-(b n /(n-1))^{n-1}+\left(v_{i}-b\right)(n-1) b^{n-2}(n /(n-$ 1)) ${ }^{n-1}$ which should equal zero Implies $-b+\left(v_{i}-b\right)(n-1)=0$, which solves to $b=v_{i}(n-1) / n$

Analyzing the expected revenue of the first-price

 and second-price (Vickrey) auctions- First-price auction: probability of there not being a bid higher than b is $(\mathrm{bn} /(\mathrm{n}-1))^{\mathrm{n}}$ (for $\left.\mathrm{b}<(\mathrm{n}-1) / \mathrm{n}\right)$
- This is the cumulative density function of the highest bid
- Probability density function is the derivative, that is, it is $\mathrm{nb}^{\mathrm{n}-1}(\mathrm{n} /(\mathrm{n}-1))^{\mathrm{n}}$
- Expected value of highest bid is $n(n /(n-1))^{n} \int(n-1) / n b^{n} d b=(n-1) /(n+1)$
- Second-price auction: probability of there not being two bids higher than b is $b^{n}+n b^{n-1}(1-b)$
- This is the cumulative density function of the second-highest bid
- Probability density function is the derivative, that is, it is $n b^{n-1}+n(n-1) b^{n-2}(1-b)-n b^{n-1}=n(n-1)\left(b^{n-2}-b^{n-1}\right)$
- Expected value is $(n-1)-n(n-1) /(n+1)=(n-1) /(n+1)$

Revenue equivalence theorem

- Suppose valuations for the single item are drawn i.i.d. from a continuous distribution over [L, H] (with no "gaps"), and agents are risk-neutral
- Then, any two auction mechanisms that
- in equilibrium always allocate the item to the bidder with the highest valuation, and
- give an agent with valuation L an expected utility of 0 , will lead to the same expected revenue for the auctioneer

(As an aside) what if bidders are not risk-neutral?

- Behavior in second-price/English/Japanese does not change, but behavior in first-price/Dutch does
- Risk averse: first price/Dutch will get higher expected revenue than second price/Japanese/English
- Risk seeking: second price/Japanese/English will get higher expected revenue than first price/Dutch

(As an aside) interdependent valuations

- E.g. bidding on drilling rights for an oil field
- Each bidder i has its own geologists who do tests, based on which the bidder assesses an expected value v_{i} of the field
- If you win, it is probably because the other bidders' geologists' tests turned out worse, and the oil field is not actually worth as much as you thought
- The so-called winner's curse
- Hence, bidding v_{i} is no longer a dominant strategy in the second-price auction
- In English and Japanese auctions, you can update your valuation based on other agents' bids, so no longer equivalent to second-price
- In these settings, English (or Japanese) > secondprice > first-price/Dutch in terms of revenue

Expected-revenue maximizing ("optimal") auctions [Myerson 81]

- Vickrey auction does not maximize expected revenue - E.g. with only one bidder, better off making a take-it-or-leave-it offer (or equivalently setting a reserve price)
- Suppose agent i draws valuation from probability density function f_{i} (cumulative density F_{i})
- Bidder's virtual valuation $\psi\left(v_{i}\right)=v_{i}-\left(1-F_{i}\left(v_{i}\right)\right) / f_{i}\left(v_{i}\right)$ - Under certain conditions, this is increasing; assume this
- The bidder with the highest virtual valuation (according to his reported valuation) wins (unless all virtual valuations are below 0 , in which case nobody wins)
- Winner pays value of lowest bid that would have made him win
- E.g. if all bidders draw uniformly from [0, 1], Myerson auction = second-price auction with reserve price ½

Vickrey auction without a seller

($/$ (ziz 1) $=2$

v(

(${ }^{2}$ zin

Can we redistribute the payment?

Idea: give everyone 1/n of the payment

not strategy-proof
Bidding higher can increase your redistribution payment

Incentive compatible redistribution [Bailey 97, Porter et al. 04, Cavallo 06]

Idea: give everyone $1 / n$ of second-highest other bid

Strategy-proof

Your redistribution does not depend on your bid; incentives are the same as in Vickrey

Bailey-Cavallo mechanism...

- Bids: $\mathrm{V}_{1} \geq \mathrm{V}_{2} \geq \mathrm{V}_{3} \geq \ldots \geq \mathrm{V}_{n} \geq 0$
- First run Vickrey auction
- Payment is V2
- First two bidders receive $\mathrm{V}_{3} / \mathrm{n}$
- Remaining bidders receive $\mathrm{V}_{2} / \mathrm{n}$
- Total redistributed: $2 \mathrm{~V} 3 / \mathrm{n}+(\mathrm{n}-$ 2) V_{2} / n
$\mathrm{R}_{1}=\mathrm{V}_{3} / \mathrm{n}$
$\mathrm{R}_{2}=\mathrm{V}_{3} / \mathrm{n}$
$\mathrm{R}_{3}=\mathrm{V}_{2} / \mathrm{n}$
$\mathrm{R}_{4}=\mathrm{V}_{2} / \mathrm{n}$
$\mathrm{R}_{\mathrm{n}-1}=\mathrm{V}_{2} / \mathrm{n}$
$\mathrm{R}_{\mathrm{n}}=\mathrm{V}_{2} / \mathrm{n}$

Is this the best possible?

Another redistribution mechanism

- Bids: $\mathrm{V}_{1} \geq \mathrm{V}_{2} \geq \mathrm{V}_{3} \geq \mathrm{V}_{4} \geq \ldots \geq \mathrm{V}_{n} \geq 0$
- First run Vickrey
- Redistribution:

Receive 1/(n-2) * secondhighest other bid,

- $2 /[(n-2)(n-3)]$ third-highest other bid
- Total redistributed:

V2-6V4/[(n-2)(n-3)]

$$
\begin{aligned}
& R_{1}=V_{3} /(n-2)-2 /[(n-2)(n-3)] V_{4} \\
& R_{2}=V_{3} /(n-2)-2 /[(n-2)(n-3)] V_{4} \\
& R_{3}=V_{2} /(n-2)-2 /[(n-2)(n-3)] V_{4} \\
& R_{4}=V_{2} /(n-2)-2 /[(n-2)(n-3)] V_{3} \\
& \cdots \\
& R_{n-1}=V_{2} /(n-2)-2 /[(n-2)(n-3)] V_{3} \\
& R n=V_{2} /(n-2)-2 /[(n-2)(n-3)] V 3
\end{aligned}
$$

