
Modeling Language GNU MathProgLanguage RefereneDraft Edition, for GLPK Version 4.16May 2007

Andrew MakhorinMosow Aviation Institute, Mosow, Russia

The GLPK pakage is part of the GNU Projet released under the aegis of GNU.Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Andrew Makhorin, Departmentfor Applied Informatis, Mosow Aviation Institute, Mosow, Russia. All rights reserved.Free Software Foundation, In., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.Permission is granted to make and distribute verbatim opies of this manual provided theopyright notie and this permission notie are preserved on all opies.Permission is granted to opy and distribute modi�ed versions of this manual under theonditions for verbatim opying, provided also that the entire resulting derived work isdistributed under the terms of a permission notie idential to this one.Permission is granted to opy and distribute translations of this manual into another lan-guage, under the above onditions for modi�ed versions.

iTable of Contents1 Introdution . 11.1 Linear programming problem . 11.2 Model objets . 21.3 Struture of model desription . 32 Coding model desription 42.1 Symboli names . 42.2 Numeri literals . 52.3 String literals . 52.4 Keywords . 52.5 Delimiters . 62.6 Comments . 63 Expressions . 73.1 Numeri expressions . 73.2 Symboli expressions . 113.3 Indexing expressions and dummy indies . 123.4 Set expressions . 153.5 Logial expressions . 183.6 Linear expressions . 204 Statements . 234.1 Set statement . 234.2 Parameter statement . 244.3 Variable statement . 264.4 Constraint statement . 274.5 Objetive statement . 284.6 Solve statement . 294.7 Chek statement . 304.8 Display statement . 304.9 Printf statement . 314.10 For statement . 325 Model data . 335.1 Coding data setion . 345.2 Set data blok . 345.3 Parameter data blok . 37Appendix A Solving models with glpsol 41Appendix B Example model desription 42

Chapter 1: Introdution 11 IntrodutionGNU MathProg is a modeling language intended for desribing linear mathematial pro-gramming models.1Model desriptions written in the GNU MathProg language onsist of a set of statementsand data bloks onstruted by the user from the language elements desribed in thisdoument.In a proess alled translation, a program alled the model translator analyzes the modeldesription and translates it into internal data strutures, whih may be then used eitherfor generating mathematial programming problem instane or diretly by a program alledthe solver to obtain numeri solution of the problem.1.1 Linear programming problemIn MathProg it is assumed that the linear programming (LP) problem has the followingstatement: minimize (or maximize)z = 1x1 + 2x2 + : : : + nxn + 0 (1)subjet to linear onstraintsL1 � a11x1 + a12x2 + : : : + a1nxn � U1L2 � a21x1 + a22x2 + : : : + a2nxn � U2: : : : : : : : : : : : : :Lm � am1x1 + am2x2 + : : :+ amnxn � Um (2)and bounds of variablesl1 � x1 � u1l2 � x2 � u2: : : :ln � xn � un (3)where:x1, x2, . . . , xn are variables;z is the objetive funtion;1, 2, . . . , n are oeÆients of the objetive funtion;0 is the onstant term (\shift") of the objetive funtion;a11, a12, . . . , amn are onstraint oeÆients;L1, L2, . . . , Lm are lower onstraint bounds;U1, U2, . . . , Um are upper onstraint bounds;l1, l2, . . . , ln are lower bounds of variables;u1, u2, . . . , un are upper bounds of variables.1 The GNU MathProg language is a subset of the AMPL language. Its GLPK implementation is mainlybased on the paper: Robert Fourer, David M. Gay, and Brian W. Kernighan, \A Modeling Languagefor Mathematial Programming." Management Siene 36 (1990) pp. 519-54.

Chapter 1: Introdution 2Bounds of variables and onstraint bounds an be �nite as well as in�nite. Besides, lowerbounds an be equal to orresponding upper bounds. Thus, the following types of variablesand onstraints are allowed:�1 < x < +1 Free (unbounded) variablex � l Variable with lower boundx � u Variable with upper boundl � x � u Double-bounded variablex = l (= u) Fixed variable�1 <P ajxj < +1 Free (unbounded) linear formP ajxj � L Inequality onstraint \greater than or equal to"P ajxj � U Inequality onstraint \less than or equal to"L �P ajxj � U Double-bounded inequality onstraintP ajxj = L (= U) Equality onstraintIn addition to pure LP problems MathProg allows mixed integer linear programming(MIP) problems, where some (or all) strutural variables are restrited to be integer.1.2 Model objetsIn MathProg the model is desribed in terms of sets, parameters, variables, onstraints, andobjetives, whih are alled model objets.The user introdues partiular model objets using the language statements. Eah modelobjet is provided with a symboli name that uniquely identi�es the objet and is intendedfor referening purposes.Model objets, inluding sets, an be multidimensional arrays built over indexing sets.Formally, n-dimensional array A is the mapping:A : �! �; (4)where � � S1 � S2 � : : : � Sn is a subset of the Cartesian produt of indexing sets, � is aset of the array members. In MathProg the set � is alled subsript domain. Its membersare n-tuples (i1; i2; : : : ; in), where i1 2 S1, i2 2 S2, . . . , in 2 Sn.If n = 0, the Cartesian produt above has exatly one element (namely, 0-tuple), so itis onvenient to think salar objets as 0-dimensional arrays whih have one member.The type of array members is determined by the type of orresponding model objet asfollows:Model objet Array memberSet Elemental plain setParameter Number or symbolVariable Elemental variableConstraint Elemental onstraintObjetive Elemental objetiveIn order to refer to a partiular objet member the objet should be provided withsubsripts. For example, if a is 2-dimensional parameter built over I � J , a referene to itspartiular member an be written as a[i, j ℄, where i 2 I and j 2 J . It is understood thatsalar objets being 0-dimensional need no subsripts.

Chapter 1: Introdution 31.3 Struture of model desriptionIt is sometimes desirable to write a model whih, at various points, may require di�erentdata for eah problem to be solved using that model. For this reason in MathProg themodel desription onsists of two parts: model setion and data setion.Model setion is a main part of the model desription that ontains delarations of modelobjets and is ommon for all problems based on the orresponding model.Data setion is an optional part of the model desription that ontains data spei� fora partiular problem.Depending on what is more onvenient model and data setions an be plaed eitherin one �le or in two separate �les. The latter feature allows to have arbitrary number ofdi�erent data setions to be used with the same model setion.

Chapter 2: Coding model desription 42 Coding model desriptionModel desription is oded in plain text format using ASCII harater set. Valid haratersaeptable in the model desription are the following:� alphabeti haraters:A B C D E F G H I J K L M N O P Q R S T U V W X Y Za b d e f g h i j k l m n o p q r s t u v w x y z _� numeri haraters:0 1 2 3 4 5 6 7 8 9� speial haraters:! " # & ' () * + , - . / : ; < = > [℄ ^ { | }� white-spae haraters:SP HT CR NL VT FFWithin string literals and omments any ASCII haraters (exept ontrol haraters)are valid.White-spae haraters are non-signi�ant. They an be used freely between lexial unitsto improve readability of the model desription. They are also used to separate lexial unitsfrom eah other if there is no other way to do that.Syntatially model desription is a sequene of lexial units in the following ategories:� symboli names;� numeri literals;� string literals;� keywords;� delimiters;� omments.The lexial units of the language are disussed below.2.1 Symboli namesSymboli name onsists of alphabeti and numeri haraters, the �rst of whih must bealphabeti. All symboli names are distint (ase sensitive).Examplesalpha123This_is_a_name_P123_ab_321Symboli names are used to identify model objets (sets, parameters, variables, on-straints, objetives) and dummy indies.All symboli names (exept names of dummy indies) must be unique, i.e. the modeldesription must have no objets with the same name. Symboli names of dummy indiesmust be unique within the sope, where they are valid.

Chapter 2: Coding model desription 52.2 Numeri literalsNumeri literal has the form xxEsyy, where xx is a real number with optional deimal point,s is the sign + or -, yy is an integer deimal exponent. The letter E is ase insensitive andan be oded as e.Examples1233.1415956.E+5.78123.456e-7Numeri literals are used to represent numeri quantities. They have obvious �xedmeaning.2.3 String literalsString literal is a sequene of arbitrary haraters enlosed either in single quotes or indouble quotes. Both these forms are equivalent.If the single quote is a part of a string literal enlosed in single quotes, it must be odedtwie. Analogously, if the double quote is a part of string literal enlosed in double quotes,it must be oded twie.Examples'This is a string'"This is another string"'1 + 2 = 3''That''s all'"She said: ""No"""String literals are used to represent symboli quantities.2.4 KeywordsKeyword is a sequene of alphabeti haraters and possibly some speial haraters. Allkeywords fall into two ategories: reserved keywords, whih annot be used as symbolinames, and non-reserved keywords, whih being reognized by ontext an be used assymboli names.Reserved keywords are the following:and else mod unionby if not withinross in ordiff inter symdiffdiv less thenNon-reserved keywords are desribed in following setions.All the keywords have �xed meaning, whih will be explained on disussion of orre-sponding syntati onstrutions, where the keywords are used.

Chapter 2: Coding model desription 62.5 DelimitersDelimiter is either a single speial harater or a sequene of two speial haraters asfollows:+ ^ == ! :)- & >= && ; [* < > || := |/ <= <> . .. {** = != , (}If delimiter onsists of two haraters, there must be no spaes between the haraters.All the delimiters have �xed meaning, whih will be explained on disussion orrespond-ing syntati onstrutions, where the delimiters are used.2.6 CommentsFor doumenting purposes the model desription an be provided with omments, whihhave two di�erent forms. The �rst form is a single-line omment, whih begins with theharater # and extends until end of line. The seond form is a omment sequene, whihis a sequene of any haraters enlosed between /* and */.Examplesset s{1..10}; # This is a omment/* This is another omment */Comments are ignored by the model translator and an appear anywhere in the modeldesription, where white-spae haraters are allowed.

Chapter 3: Expressions 73 ExpressionsExpression is a rule for omputing a value. In model desription expressions are used asonstituents of ertain statements.In general ase expressions onsist of operands and operators.Depending on the type of the resultant value all expressions fall into the following ate-gories:� numeri expressions;� symboli expressions;� indexing expressions;� set expressions;� logial expressions;� linear expressions.3.1 Numeri expressionsNumeri expression is a rule for omputing a single numeri value represented in the formof oating-point number.The primary numeri expression may be a numeri literal, dummy index, unsubsriptedparameter, subsripted parameter, built-in funtion referene, iterated numeri expression,onditional numeri expression, or another numeri expression enlosed in parentheses.Examples1.23 (numeri literal)j (dummy index)time (unsubsripted parameter)a['May 2003',j+1℄ (subsripted parameter)abs(b[i,j℄) (funtion referene)sum{i in S diff T} alpha[i℄ * b[i,j℄ (iterated expression)if i in I then 2 * p else q[i+1℄ (onditional expression)(b[i,j℄ + .5 *) (parenthesized expression)More general numeri expressions ontaining two or more primary numeri expressionsmay be onstruted by using ertain arithmeti operators.Examplesj+12 * a[i-1,j+1℄ - b[i,j℄sum{j in J} a[i,j℄ * x[j℄ + sum{k in K} b[i,k℄ * x[k℄(if i in I then 2 * p else q[i+1℄) / (a[i,j℄ + 1.5)Numeri literalsIf the primary numeri expression is a numeri literal, the resultant value is obvious.Dummy indiesIf the primary numeri expression is a dummy index, the resultant value is urrent valueassigned to the dummy index.

Chapter 3: Expressions 8Unsubsripted parametersIf the primary numeri expression is an unsubsripted parameter (whih must be 0-dimen-sional), the resultant value is the value of the parameter.Subsripted parametersThe primary numeri expression, whih refers to a subsripted parameter, has the followingsyntati form:name[i1; i2; : : : ; in℄;where name is the symboli name of the parameter, i1, i2, . . . , in are subsripts.Eah subsript must be a numeri or symboli expression. The number of subsriptsin the subsript list must be the same as the dimension of the parameter with whih thesubsript list is assoiated.Atual values of subsript expressions are used to identify a partiular member of theparameter that determines the resultant value of the primary expression.Funtion referenesIn MathProg there are the following built-in funtions whih may be used in numeri ex-pressions:abs(x) absolute valueatan(x) trigonometri artangent artan x (in radians)atan(y, x) trigonometri artangent artan y/x (in radians)ard(x) ardinality (the number of elements) of set xeil(x) smallest integer not less than x (\eiling of x")os(x) trigonometri osine os x (in radians)floor(x) largest integer not greater than x (\oor of x")exp(x) base-e exponential exlength(x) length of harater string xlog(x) natural logarithm log xlog10(x) ommon (deimal) logarithm log10 xmax(x1; x2; : : : ; xn) the largest of values x1, x2, . . . , xnmin(x1; x2; : : : ; xn) the smallest of values x1, x2, . . . , xnround(x) rounding x to nearest integerround(x, n) rounding x to n frational deimal digitssin(x) trigonometri sine sin x (in radians)sqrt(x) square root pxtrun(x) trunating x to nearest integertrun(x, n) trunating x to n frational deimal digitsIrand224() pseudo-random integer uniformly distributed in [0; 224)Uniform01() pseudo-random number uniformly distributed in [0; 1)Uniform(a, b) pseudo-random number uniformly distributed in [a, b)Normal01() Gaussian pseudo-random variate with � = 0 and � = 1Normal(�; �) Gaussian pseudo-random variate with given � and �Arguments of all built-in funtions (exept ard and length) must be numeri expres-sions. The argument of ard must be a set expression. The argument of length must be asymboli expression.

Chapter 3: Expressions 9The resultant value of the numeri expression, whih is a funtion referene, is the resultof applying the funtion to its argument(s).Note that eah pseudo-random generator funtion have a latent argument (i.e. someinternal state), whih is hanged whenever the funtion has been applied. Thus, if thefuntion is applied repeatedly even to idential arguments, due to the side e�et di�erentresultant values are always produed.Iterated expressionsIterated numeri expression is a primary numeri expression, whih has the following syn-tati form:iterated-operator indexing-expression integrandwhere iterated-operator is the symboli name of the iterated operator to be performed (seebelow), indexing expression is an indexing expression whih introdues dummy indies andontrols iterating, integrand is a numeri expression that partiipates in the operation.In MathProg there are four iterated operators, whih may be used in numeri expressions:sum summation X(i1;:::;in)2�x(i1; : : : ; in)prod prodution Y(i1;:::;in)2�x(i1; : : : ; in)min minimum min(i1;:::;in)2�x(i1; : : : ; in)max maximum max(i1;:::;in)2�x(i1; : : : ; in)where i1, . . . , in are dummy indies introdued in the indexing expression, � is the domain,a set of n-tuples spei�ed by the indexing expression whih de�nes partiular values assignedto the dummy indies on performing the iterated operation, x(i1; : : : ; in) is the integrand,a numeri expression whose resultant value depends on the dummy indies.The resultant value of an iterated numeri expression is the result of applying of theiterated operator to its integrand over all n-tuples ontained in the domain.Conditional expressionsConditional numeri expression is a primary numeri expression, whih has one of thefollowing two syntati forms:if b then x else yif b then xwhere b is an logial expression, x and y are numeri expressions.The resultant value of the onditional expression depends on the value of the logialexpression that follows the keyword if. If it takes on the value true, the value of the ondi-tional expression is the value of the expression that follows the keyword then. Otherwise, ifthe logial expression takes on the value false, the value of the onditional expression is thevalue of the expression that follows the keyword else. If the redued form of the onditionalexpression is used and the logial expression takes on the value false, the resultant value ofthe onditional expression is zero.

Chapter 3: Expressions 10Parenthesized expressionsAny numeri expression may be enlosed in parentheses that syntatially makes it primarynumeri expression.Parentheses may be used in numeri expressions, as in algebra, to speify the desiredorder in whih operations are to be performed. Where parentheses are used, the expressionwithin the parentheses is evaluated before the resultant value is used.The resultant value of the parenthesized expression is the same as the value of theexpression enlosed within parentheses.Arithmeti operatorsIn MathProg there are the following arithmeti operators, whih may be used in numeriexpressions:+ x unary plus- x unary minusx + y additionx - y subtrationx less y positive di�erene (if x < y then 0 else x � y)x * y multipliationx / y divisionx div y quotient of exat divisionx mod y remainder of exat divisionx ** y, x ^ y exponentiation (raise to power)where x and y are numeri expressions.If the expression inludes more than one arithmeti operator, all operators are performedfrom left to right aording to the hierarhy of operations (see below) with the only exeptionthat the exponentiaion operators are performed from right to left.The resultant value of the expression, whih ontains arithmeti operators, is the resultof applying the operators to their operands.Hierarhy of operationsThe following list shows the hierarhy of operations in numeri expressions:Operation HierarhyEvaluation of funtions (abs, eil, et.) 1stExponentiation (**, ^) 2ndUnary plus and minus (+, -) 3rdMultipliation and division (*, /, div, mod) 4thIterated operations (sum, prod, min, max) 5thAddition and subtration (+, -, less) 6thConditional evaluation (if . . . then . . . else) 7thThis hierarhy is used to determine whih of two onseutive operations is performed�rst. If the �rst operator is higher than or equal to the seond, the �rst operation isperformed. If it is not, the seond operator is ompared to the third, et. When the endof the expression is reahed, all of the remaining operations are performed in the reverseorder.

Chapter 3: Expressions 113.2 Symboli expressionsSymboli expression is a rule for omputing a single symboli value represented in the formof harater string.The primary symboli expression may be a string literal, dummy index, unsubsriptedparameter, subsripted parameter, built-in funtion referene, onditional symboli expres-sion, or another symboli expression enlosed in parentheses.It is also allowed to use a numeri expression as the primary symboli expression, inwhih ase the resultant value of the numeri expression is automatially onverted to thesymboli type.Examples'May 2003' (string literal)j (dummy index)p (unsubsripted parameter)s['ab',j+1℄ (subsripted parameter)substr(name[i℄,k+1,3) (funtion referene)if i in I then s[i,j℄ else t[i+1℄ (onditional expression)((10 * b[i,j℄) & '.bis') (parenthesized expression)More general symboli expressions ontaining two or more primary symboli expressionsmay be onstruted by using the onatenation operator.Examples'ab[' & i & ',' & j & '℄'"from " & ity[i℄ & " to " & ity[j℄The priniples of evaluation of symboli expressions are ompletely analogous to thatones given for numeri expressions (see above).Funtion referenesIn MathProg there are the following built-in funtions whih may be used in symboliexpressions:substr(x, y) substring of x starting from position ysubstr(x, y, z) substring of x starting from position y and having length zThe �rst argument of substrmust be a symboli expression while its seond and optionalthird arguments must be numeri expressions.The resultant value of the symboli expression, whih is a funtion referene, is the resultof applying the funtion to its arguments.Symboli operatorsCurrently in MathProg there is the only symboli operator:x & ywhere x and y are symboli expressions. This operator means onatenation of its twosymboli operands, whih are harater strings.

Chapter 3: Expressions 12Hierarhy of operationsThe following list shows the hierarhy of operations in symboli expressions:Operation HierarhyEvaluation of numeri operations 1st-7thConatenation (&) 8thConditional evaluation (if . . . then . . . else) 9thThis hierarhy has the same meaning as explained in Setion \Numeri expressions".3.3 Indexing expressions and dummy indiesIndexing expression is an auxiliary onstrution, whih spei�es a plain set of n-tuples andintrodues dummy indies. It has two syntati forms:{ entry1; entry2; : : : ; entrym }{ entry1; entry2; : : : ; entrym : prediate }where entry1; entry2; : : : ; entrym are indexing entries, prediate is a logial expression whihspei�es an optional prediate.Eah indexing entry in the indexing expression has one of the following three forms:t in S(t1; t2; : : : ; tk) in SSwhere t1; t2; : : : ; tk are indies, S is a set expression (disussed in the next setion), whihspei�es the basi set.The number of indies in the indexing entry must be the same as the dimension of thebasi set S, i.e. if S onsists of 1-tuples, the �rst form must be used, and if S onsists ofn-tuples, where n > 1, the seond form must be used.If the �rst form of the indexing entry is used, the index t an be a dummy index only.If the seond form is used, the indies t1; t2; : : : ; tk an be either dummy indies or somenumeri or symboli expressions, where at least one index must be a dummy index. Thethird, redued form of the indexing entry has the same e�et as if there were t (if S is1-dimensional) or t1; t2; : : : ; tk (if S is n-dimensional) all spei�ed as dummy indies.Dummy index is an auxiliary model objet, whih ats like an individual variable. Valuesassigned to dummy indies are omponents of n-tuples from basi sets, i.e. some numeriand symboli quantities.For referening purposes dummy indies an be provided with symboli names. However,unlike other model objets (sets, parameters, et.) dummy indies do not need to beexpliitly delared. Eah undelared symboli name being used in the indexing position ofan indexing entry is reognized as the symboli name of orresponding dummy index.Symboli names of dummy indies are valid only within the sope of the indexing ex-pression, where the dummy indies were introdued. Beyond the sope the dummy indiesare ompletely inaessible, so the same symboli names may be used for other purposes,in partiular, to represent dummy indies in other indexing expressions.The sope of indexing expression, where impliit delarations of dummy indies are valid,depends on the ontext, in whih the indexing expression is used:

Chapter 3: Expressions 131. If the indexing expression is used in iterated operator, its sope extends until the endof the integrand.2. If the indexing expression is used as a primary set expression, its sope extends untilthe end of this indexing expression.3. If the indexing expression is used to de�ne the subsript domain in delarations of somemodel objets, its sope extends until the end of the orresponding statement.The indexing mehanism implemented by means of indexing expressions is best explainedby some examples disussed below.Let there be three sets:A = {4, 7, 9}B = {(1,Jan), (1,Feb), (2,Mar), (2,Apr), (3,May), (3,Jun)}C = {a, b, }where A and C onsist of 1-tuples (singles), B onsists of 2-tuples (doubles). And onsiderthe following indexing expression:{i in A, (j,k) in B, l in C}where i, j, k, and l are dummy indies.Although MathProg is not a proedural language, for any indexing expression an equiv-alent algorithmi desription ould be given. In partiular, the algorithmi desription ofthe indexing expression above is the following:for all i 2 A dofor all (j; k) 2 B dofor all l 2 C doation;where the dummy indies i, j, k, l are onseutively assigned orresponding omponentsof n-tuples from the basi sets A, B, C, and ation is some ation that depends on theontext, where the indexing expression is used. For example, if the ation were printingurrent values of dummy indies, the output would look like follows:i = 4 j = 1 k = Jan l = ai = 4 j = 1 k = Jan l = bi = 4 j = 1 k = Jan l = i = 4 j = 1 k = Feb l = ai = 4 j = 1 k = Feb l = b: : : : : : : : : : : :i = 9 j = 3 k = Jun l = bi = 9 j = 3 k = Jun l = Let the example indexing expression be used in the following iterated operation:sum{i in A, (j,k) in B, l in C} p[i,j,k,l℄where p[i, j, k, l ℄ may be a 4-dimensional numeri parameter or some numeri expressionwhose resultant value depends on i, j, k, and l. In this ase the ation is summation, so theresultant value of the primary numeri expression is:Xi2A;(j;k)2B;l2C(pijkl):

Chapter 3: Expressions 14Now let the example indexing expression be used as a primary set expression. In thisase the ation is gathering all 4-tuples (quadruples) of the form (i, j, k, l) in one set, sothe resultant value of suh operation is simply the Cartesian produt of the basi sets:A�B � C = f(i; j; k; l) : i 2 A; (j; k) 2 B; l 2 Cg:Note that in this ase the same indexing expression might be written in the redued form:{A, B, C}beause the dummy indies i, j, k, and l are not referened and therefore their symbolinames are not needed.Finally, let the example indexing expression be used as the subsript domain in thedelaration of a 4-dimensional model objet, say, a numeri parameter:par p{i in A, (j,k) in B, l in C} ... ;In this ase the ation is generating the parameter members, where eah member has theform p[i, j, k, l ℄.As was said above, some indies in the seond form of indexing entries may be numerior symboli expressions, not only dummy indies. In this ase resultant values of suh ex-pressions play role of some logial onditions to selet only that n-tuples from the Cartesianprodut of basi sets, whih satisfy these onditions.Consider, for example, the following indexing expression:{i in A, (i-1,k) in B, l in C}where i, k, l are dummy indies, and i�1 is a numeri expression. The algorithmi desrip-tion of this indexing expression is the following:for all i 2 A dofor all (j; k) 2 B and j = i� 1 dofor all l 2 C doation;Thus, if this indexing expression were used as a primary set expression, the resultant setwould be the following:{(4,May,a), (4,May,b), (4,May,), (4,Jun,a), (4,Jun,b), (4,Jun,)}.Should note that in this ase the resultant set onsists of 3-tuples, not of 4-tuples, beausein the indexing expression there is no dummy index that orresponds to the �rst omponentof 2-tuples from the set B.The general rule is: the number of omponents of n-tuples de�ned by an indexing ex-pression is the same as the number of dummy indies in that indexing expression, wherethe orrespondene between dummy indies and omponents on n-tuples in the resultantset is positional, i.e. the �rst dummy index orresponds to the �rst omponent, the seonddummy index orresponds to the seond omponent, et.In many ases it is needed to selet a subset from the Cartesian produt of some sets.This may be attained by using an optional logial prediate, whih is spei�ed in indexingexpression after the last or the only indexing entry.Consider, for another example, the following indexing expression:

Chapter 3: Expressions 15{i in A, (j,k) in B, l in C: i <= 5 and k <> 'Mar'}where the logial expression following the olon is a prediate. The algorithmi desriptionof this indexing expression is the following:for all i 2 A dofor all (j; k) 2 B dofor all l 2 C doif i � 5 and k 6= `Mar ' thenation;Thus, if this indexing expression were used as a primary set expression, the resultant setwould be the following:{(4,1,Jan,a), (4,1,Feb,a), (4,2,Apr,a), . . . , (4,3,Jun,)}.If no prediate is spei�ed in the indexing expression, the one, whih takes on the valuetrue, is assumed.3.4 Set expressionsSet expression is a rule for omputing an elemental set, i.e. a olletion of n-tuples, whereomponents of n-tuples are numeri and symboli quantities.The primary set expression may be a literal set, unsubsripted set, subsripted set,\arithmeti" set, indexing expression, iterated set expression, onditional set expression, oranother set expression enlosed in parentheses.Examples{(123,'aa'), (i,'bb'), (j-1,'')} (literal set)I (unsubsripted set)S[i-1,j+1℄ (subsripted set)1..t-1 by 2 (\arithmeti" set){t in 1..T, (t+1,j) in S: (t,j) in F} (indexing expression)setof{i in I, j in J}(i+1,j-1) (iterated expression)if i < j then S[i℄ else F diff S[j℄ (onditional expression)(1..10 union 21..30) (parenthesized expression)More general set expressions ontaining two or more primary set expressions may beonstruted by using ertain set operators.Examples(A union B) inter (I ross J)1..10 ross (if i < j then {'a', 'b', ''} else {'d', 'e', 'f'})Literal setsLiteral set is a primary set expression, whih has the following two syntati forms:fe1; e2; : : : ; emgf(e11; : : : ; e1n); (e21; : : : ; e2n); : : : ; (em1; : : : ; emn)gwhere e1, . . . , em, e11, . . . , emn are numeri or symboli expressions.If the �rst form is used, the resultant set onsists of 1-tuples (singles) enumerated withinthe urly braes. It is allowed to speify an empty set, whih has no 1-tuples.

Chapter 3: Expressions 16If the seond form is used, the resultant set onsists of n-tuples enumerated within theurly braes, where a partiular n-tuple onsists of orresponding omponents enumeratedwithin the parentheses. All n-tuples must have the same number of omponents.Unsubsripted setsIf the primary set expression is an unsubsripted set (whih must be 0-dimensional), theresultant set is an elemental set assoiated with the orresponding set objet.Subsripted setsThe primary set expression, whih refers to a subsripted set, has the following syntatiform: name[i1; i2; : : : ; in℄;where name is the symboli name of the set objet, i1, i2, . . . , in are subsripts.Eah subsript must be a numeri or symboli expression. The number of subsriptsin the subsript list must be the same as the dimension of the set objet with whih thesubsript list is assoiated.Atual values of subsript expressions are used to identify a partiular member of theset objet that determines the resultant set.\Arithmeti" setThe primary set expression, whih is an \arithmeti" set, has the following two syntatiforms:t0 .. tf by Ætt0 .. tfwhere t0, t1, and Æt are numeri expressions (the value of Æt must not be zero). The seondform is equivalent to the �rst form, where Æt = 1.If Æt > 0, the resultant set is determined as follows:ft : 9k 2 Z(t = t0 + kÆt; t0 � t � tf)gOtherwise, if Æt < 0, the resultant set is determined as follows:ft : 9k 2 Z(t = t0 + kÆt; tf � t � t0)gIndexing expressionsIf the primary set expression is an indexing expression, the resultant set is determined asdesribed in Setion \Indexing expressions and dummy indies" (see above).Iterated expressionsIterated set expression is a primary set expression, whih has the following syntati form:setof indexing-expression integrandwhere indexing-expression is an indexing expression whih introdues dummy indies andontrols iterating, integrand is either a single numeri or symboli expression or a list ofnumeri and symboli expressions separated by ommae and enlosed in parentheses.

Chapter 3: Expressions 17If the integrand is a single numeri or symboli expression, the resultant set onsists of1-tuples and is determined as follows:fx : (i1; : : : ; in) 2 �g;where x is a value of the integrand, i1, . . . , in are dummy indies introdued in the in-dexing expression, � is the domain, a set of n-tuples spei�ed by the indexing expressionwhih de�nes partiular values assigned to the dummy indies on performing the iteratedoperation.If the integrand is a list ontaining m numeri and symboli expressions, the resultantset onsists of m-tuples and is determined as follows:f(x1; : : : ; xm) : (i1; : : : ; in) 2 �g;where x1, . . . , xm are values of the expressions in the integrand list, i1, . . . , in and � havethe same meaning as above.Conditional expressionsConditional set expression is a primary set expression that has the following syntati form:if b then X else Ywhere b is an logial expression, X and Y are set expressions, whih must de�ne sets of thesame dimension.The resultant value of the onditional expression depends on the value of the logialexpression that follows the keyword if. If it takes on the value true, the resultant set is thevalue of the expression that follows the keyword then. Otherwise, if the logial expressiontakes on the value false, the resultant set is the value of the expression that follows thekeyword else.Parenthesized expressionsAny set expression may be enlosed in parentheses that syntatially makes it primary setexpression.Parentheses may be used in set expressions, as in algebra, to speify the desired order inwhih operations are to be performed. Where parentheses are used, the expression withinthe parentheses is evaluated before the resultant value is used.The resultant value of the parenthesized expression is the same as the value of theexpression enlosed within parentheses.Set operatorsIn MathProg there are the following set operators, whih may be used in set expressions:X union Y union X [YX diff Y di�erene XnYX symdiff Y symmetri di�erene X � YX inter Y intersetion X \ YX ross Y ross (Cartesian) produt X � Ywhere X and Y are set expressions, whih must de�ne sets of the idential dimension(exept for the Cartesian produt).If the expression inludes more than one set operator, all operators are performed fromleft to right aording to the hierarhy of operations (see below).

Chapter 3: Expressions 18The resultant value of the expression, whih ontains set operators, is the result ofapplying the operators to their operands.The dimension of the resultant set, i.e. the dimension of n-tuples, of whih the resultantset onsists of, is the same as the dimension of the operands, exept the Cartesian produt,where the dimension of the resultant set is the sum of dimensions of the operands.Hierarhy of operationsThe following list shows the hierarhy of operations in set expressions:Operation HierarhyEvaluation of numeri operations 1st-7thEvaluation of symboli operations 8th-9thEvaluation of iterated or \arithmeti" set (setof, ..) 10thCartesian produt (ross) 11thIntersetion (inter) 12thUnion and di�erene (union, diff, symdiff) 13thConditional evaluation (if . . . then . . . else) 14thThis hierarhy is used to determine whih of two onseutive operations is performed�rst. If the �rst operator is higher than or equal to the seond, the �rst operation isperformed. If it is not, the seond operator is ompared to the third, et. When the endof the expression is reahed, all of the remaining operations are performed in the reverseorder.3.5 Logial expressionsLogial expression is a rule for omputing a single logial value, whih an be either true orfalse.The primary logial expression may be a numeri expression, relational expression, iter-ated logial expression, or another logial expression enlosed in parentheses.Examplesi+1 (numeri expression)a[i,j℄ < 1.5 (relational expression)s[i+1,j-1℄ <> 'Mar' & year (relational expression)(i+1,'Jan') not in I ross J (relational expression)S union T within A[i℄ inter B[j℄ (relational expression)forall{i in I, j in J} a[i,j℄ < .5 * b (iterated expression)(a[i,j℄ < 1.5 or b[i℄ >= a[i,j℄) (parenthesized expression)More general logial expressions ontaining two or more primary logial expressions maybe onstruted by using ertain logial operators.Examplesnot (a[i,j℄ < 1.5 or b[i℄ >= a[i,j℄) and (i,j) in S(i,j) in S or (i,j) not in T diff UNumeri expressionsThe resultant value of the primary logial expression, whih is a numeri expression, is true,if the resultant value of the numeri expression is non-zero. Otherwise the resultant valueof the logial expression is false.

Chapter 3: Expressions 19Relational expressionsIn MathProg there are the following relational operators, whih may be used in logialexpressions:x < y test on x < yx <= y test on x � yx = y, x == y test on x = yx >= y test on x � yx <> y, x != y test on x 6= yx in Y test on x 2 Y(x1; : : : ; xn) in Y test on (x1; : : : ; xn) 2 Yx not in Y, x !in Y test on x 62 Y(x1; : : : ; xn) not in Y , (x1; : : : ; xn) !in Y test on (x1; : : : ; xn) 62 YX within Y test on X � YX not within Y, X !within Y test on X 6� Ywhere x, x1, . . . , xn, y are numeri or symboli expressions, X and Y are set expression.Note:1. If x and y are symboli expressions, only the relational operators =, ==, <>,and != an be used.2. In the operations in, not in, and !in the number of omponents in the�rst operands must be the same as the dimension of the seond operand.3. In the operations within, not within, and !within both operands musthave idential dimension.All the relational operators listed above have their onventional mathematial mean-ing. The resultant value is true, if the orresponding relation is satis�ed for its operands,otherwise false.Iterated expressionsIterated logial expression is a primary logial expression, whih has the following syntatiform: iterated-operator indexing-expression integrandwhere iterated-operator is the symboli name of the iterated operator to be performed (seebelow), indexing expression is an indexing expression whih introdues dummy indies andontrols iterating, integrand is a logial expression that partiipates in the operation.In MathProg there are two iterated operators, whih may be used in logial expressions:forall 8-quanti�ation 8(i1; : : : ; in)2�[x(i1; : : : ; in)℄exists 9-quanti�ation 9(i1; : : : ; in)2�[x(i1; : : : ; in)℄where i1, . . . , in are dummy indies introdued in the indexing expression, � is the domain,a set of n-tuples spei�ed by the indexing expression whih de�nes partiular values assignedto the dummy indies on performing the iterated operation, x(i1; : : : ; in) is the integrand,a logial expression whose resultant value depends on the dummy indies.For 8-quanti�ation the resultant value of the iterated logial expression is true, if thevalue of the integrand is true for all n-tuples ontained in the domain, otherwise false.For 9-quanti�ation the resultant value of the iterated logial expression is false, if thevalue of the integrand is false for all n-tuples ontained in the domain, otherwise true.

Chapter 3: Expressions 20Parenthesized expressionsAny logial expression may be enlosed in parentheses that syntatially makes it primarylogial expression.Parentheses may be used in logial expressions, as in algebra, to speify the desired orderin whih operations are to be performed. Where parentheses are used, the expression withinthe parentheses is evaluated before the resultant value is used.The resultant value of the parenthesized expression is the same as the value of theexpression enlosed within parentheses.Logial operatorsIn MathProg there are the following logial operators, whih may be used in logial expres-sions: not x, ! x negationx and y, x && y onjuntion (logial \and")x or y, x || y disjuntion (logial \or")where x and y are logial expressions.If the expression inludes more than one logial operator, all operators are performedfrom left to right aording to the hierarhy of operations (see below).The resultant value of the expression, whih ontains logial operators, is the result ofapplying the operators to their operands.Hierarhy of operationsThe following list shows the hierarhy of operations in logial expressions:Operation HierarhyEvaluation of numeri operations 1st-7thEvaluation of symboli operations 8th-9thEvaluation of set operations 10th-14thRelational operations (<, <=, et.) 15thNegation (not, !) 16thConjuntion (and, &&) 17th8- and 9-quanti�ation (forall, exists) 18thDisjuntion (or, ||) 19thThis hierarhy has the same meaning as explained in Setion \Numeri expressions".3.6 Linear expressionsLinear expression is a rule for omputing so alled linear form or simply formula, whih isa linear (or aÆne) funtion of elemental variables.The primary linear expression may be an unsubsripted variable, subsripted variable, it-erated linear expression, onditional linear expression, or another linear expression enlosedin parentheses.It is also allowed to use a numeri expression as the primary linear expression, in whihase the resultant value of the numeri expression is automatially onverted to the formulathat inludes the only onstant term.

Chapter 3: Expressions 21Examplesz (unsubsripted variable)x[i,j℄ (subsripted variable)sum{j in J} (a[i℄ * x[i,j℄ + 3 * y) (iterated expression)if i in I then x[i,j℄ else 1.5 * z + 3 (onditional expression)(a[i,j℄ * x[i,j℄ + y[i-1℄ + .1) (parenthesized expression)More general linear expressions ontaining two or more primary linear expressions maybe onstruted by using ertain arithmeti operators.Examples2 * x[i-1,j+1℄ + 3.5 * y[k℄ + .5 * z(- x[i,j℄ + 3.5 * y[k℄) / sum{t in T} abs(d[i,j,t℄)Unsubsripted variablesIf the primary linear expression is an unsubsripted variable (whih must be 0-dimensional),the resultant formula is that unsubsripted variable.Subsripted variablesThe primary linear expression, whih refers to a subsripted variable, has the followingsyntati form:name[i1; i2; : : : ; in℄;where name is the symboli name of the variable, i1, i2, . . . , in are subsripts.Eah subsript must be a numeri or symboli expression. The number of subsripts inthe subsript list must be the same as the dimension of the variable with whih the subsriptlist is assoiated.Atual values of subsript expressions are used to identify a partiular member of themodel variable that determines the resultant formula, whih is an elemental variable asso-iated with the orresponding member.Iterated expressionsIterated linear expression is a primary linear expression, whih has the following syntatiform:sum indexing-expression integrandwhere indexing-expression is an indexing expression whih introdues dummy indies andontrols iterating, integrand is a linear expression that partiipates in the operation.The iterated linear expression is evaluated exatly in the same way as the iteratednumeri expression (see Setion \Numeri expressions" above) with the exeption that theintegrand partiipated in the summation is a formula, not a numeri value.Conditional expressionsConditional linear expression is a primary linear expression, whih has one of the followingtwo syntati forms:if b then f else gif b then fwhere b is an logial expression, f and g are linear expressions.

Chapter 3: Expressions 22The onditional linear expression is evaluated exatly in the same way as the ondi-tional numeri expression (see Setion \Numeri expressions" above) with the exeptionthat operands partiipated in the operation are formulae, not numeri values.Parenthesized expressionsAny linear expression may be enlosed in parentheses that syntatially makes it primarylinear expression.Parentheses may be used in linear expressions, as in algebra, to speify the desired orderin whih operations are to be performed. Where parentheses are used, the expression withinthe parentheses is evaluated before the resultant formula is used.The resultant value of the parenthesized expression is the same as the value of theexpression enlosed within parentheses.Arithmeti operatorsIn MathProg there are the following arithmeti operators, whih may be used in linearexpressions:+ f unary plus- f unary minusf + g additionf - g subtrationx * f, f * x multipliationf / x divisionwhere f and g are linear expressions, x is a numeri expression (more preisely, a linearexpression ontaining the onstant term only).If the expression inludes more than one arithmeti operator, all operators are performedfrom left to right aording to the hierarhy of operations (see below).The resultant value of the expression, whih ontains arithmeti operators, is the resultof applying the operators to their operands.Hierarhy of operationsThe hierarhy of arithmeti operations used in linear expressions is the same as for numeriexpressions (for details see Setion \Numeri expressions" above).

Chapter 4: Statements 234 StatementsStatements are basi units of the model desription. In MathProg all statements are dividedinto two ategories: delaration statements and funtional statements.Delaration statements (set statement, parameter statement, variable statement, on-straint statement, and objetive statement) are used to delare model objets of ertainkinds and de�ne ertain properties of that objets.Funtional statements (solve statement, hek statement, display statement, printf state-ment, loop statement) are intended for performing some spei� ations.Note that delaration statements may follow in arbitrary order whih does not a�et theresult of translation. However, any model objet must be delared before it is referened inother statements.4.1 Set statement� �set name alias domain , attrib , . . . , attrib ;
 	Where: name is the symboli name of the set;alias is an optional string literal whih spei�es the alias of the set;domain is an optional indexing expression whih spei�es the subsript domainof the set;attrib, . . . , attrib are optional attributes of the set. (Commae preeding at-tributes may be omitted.)Optional attributes:dimen n spei�es dimension of n-tuples, whih the set onsists of;within expressionspei�es a superset whih restrits the set or all its members (elemental sets)to be within this superset;:= expressionspei�es an elemental set assigned to the set or its members;default expressionspei�es an elemental set assigned to the set or its members whenever no ap-propriate data are available in the data setion.Examplesset V;set E within V ross V;set step{s in 1..maxiter} dimen 2 := if s = 1 then E else step[s-1℄union setof{k in V, (i,k) in step[s-1℄, (k,j) in step[s-1℄}(i,j);set A{i in I, j in J}, within B[i+1℄ ross C[j-1℄, within D diff E,default {('ab',123), (321,'ba')};The set statement delares a set. If the subsript domain is not spei�ed, the set is asimple set, otherwise it is an array of elemental sets.

Chapter 4: Statements 24The dimen attribute spei�es dimension of n-tuples, whih the set (if it is a simple set)or its members (if the set is an array of elemental sets) onsist of, where n must be unsignedinteger from 1 to 20. At most one dimen attribute an be spei�ed. If the dimen attributeis not spei�ed, dimension of n-tuples is impliitly determined by other attributes (forexample, if there is a set expression that follows := or the keyword default, the dimensionof n-tuples of the orresponding elemental set is used). If no dimension information isavailable, dimen 1 is assumed.The within attribute spei�es a set expression whose resultant value is a superset usedto restrit the set (if it is a simple set) or its members (if the set is an array of elementalsets) to be within this superset. Arbitrary number of within attributes may be spei�edin the same set statement.The assign (:=) attribute spei�es a set expression used to evaluate elemental set(s)assigned to the set (if it is a simple set) or its members (if the set is an array of elementalsets). If the assign attribute is spei�ed, the set is omputable and therefore needs no datato be provided in the data setion. If the assign attribute is not spei�ed, the set must beprovided with data in the data setion. At most one assign or default attribute an bespei�ed for the same set.The default attribute spei�es a set expression used to evaluate elemental set(s) as-signed to the set (if it is a simple set) or its members (if the set is an array of elementalsets) whenever no appropriate data are available in the data setion. If neither assign nordefault attribute is spei�ed, missing data will ause an error.4.2 Parameter statement� �param name alias domain , attrib , . . . , attrib ;
 	Where: name is the symboli name of the parameter;alias is an optional string literal whih spei�es the alias of the parameter;domain is an optional indexing expression whih spei�es the subsript domainof the parameter;attrib, . . . , attrib are optional attributes of the parameter. (Commae preedingattributes may be omitted.)Optional attributes:integer spei�es that the parameter is integer;binary spei�es that the parameter is binary;symboli spei�es that the parameter is symboli;relation expression(where relation is one of: < <= = == >= > <> !=)spei�es a ondition that restrits the parameter or its members to satisfy thisondition;in expressionspei�es a superset that restrits the parameter or its members to be in thissuperset;

Chapter 4: Statements 25:= expressionspei�es a value assigned to the parameter or its members;default expressionspei�es a value assigned to the parameter or its members whenever no appro-priate data are available in the data setion.Examplesparam units{raw, prd} >= 0;param profit{prd, 1..T+1};param N := 20, integer, >= 0, <= 100;param omb 'n hoose k' {n in 0..N, k in 0..n} :=if k = 0 or k = n then 1 else omb[n-1,k-1℄ + omb[n-1,k℄;param p{i in I, j in J}, integer, >= 0, <= i+j, in A[i℄ symdiff B[j℄,in C[i,j℄, default 0.5 * (i + j);param month symboli default 'May' in {'Mar', 'Apr', 'May'};The parameter statement delares a parameter. If the subsript domain is not spei�ed,the parameter is a simple (salar) parameter, otherwise it is a n-dimensional array.The type attributes integer, binary, and symboli qualify the type values whih anbe assigned to the parameter as shown below:Type attribute Assigned valuesnot spei�ed Any numeri valuesinteger Only integer numeri valuesbinary Either 0 or 1symboli Any numeri and symboli valuesThe symboli attribute annot be spei�ed along with other type attributes. Beingspei�ed it must preede all other attributes.The ondition attribute spei�es an optional ondition that restrits values assigned tothe parameter to satisfy this ondition. This attribute has the following syntati forms:< v Chek for x < v<= v Chek for x � v= v, == v Chek for x = v>= v Chek for x � v> v Chek for x > v<> v, != v Chek for x 6= vwhere x is a value assigned to the parameter, v is the resultant value of a numeri or symboliexpression spei�ed in the ondition attribute. If the parameter is symboli, onditions inthe form of inequality are not allowed. Arbitrary number of ondition attributes an bespei�ed for the same parameter. If a value being assigned to the parameter during modelevaluation violates at least one spei�ed ondition, an error is raised.The in attribute is similar to the ondition attribute and spei�es a set expressionwhose resultant value is a superset used to restrit numeri or symboli values assigned tothe parameter to be in this superset. Arbitrary number of the in attributes an be spei�edfor the same parameter. If a value being assigned to the parameter during model evaluationis not in at least one spei�ed superset, an error is raised.

Chapter 4: Statements 26The assign (:=) attribute spei�es a numeri or symboli expression used to ompute avalue assigned to the parameter (if it is a simple parameter) or its member (if the parameteris an array). If the assign attribute is spei�ed, the parameter is omputable and thereforeneeds no data to be provided in the data setion. If the assign attribute is not spei�ed, theparameter must be provided with data in the data setion. At most one assign or defaultattribute an be spei�ed for the same parameter.The default attribute spei�es a numeri or symboli expression used to ompute avalue assigned to the parameter or its member whenever no appropriate data are availablein the data setion. If neither assign nor default attribute is spei�ed, missing data willause an error.4.3 Variable statement� �var name alias domain , attrib , . . . , attrib ;
 	Where: name is the symboli name of the variable;alias is an optional string literal whih spei�es the alias of the variable;domain is an optional indexing expression whih spei�es the subsript domainof the variable;attrib, . . . , attrib are optional attributes of the variable. (Commae preedingattributes may be omitted.)Optional attributes:integer restrits the variable to be integer;binary restrits the variable to be binary;>= expressionspei�es an lower bound of the variable;<= expressionspei�es an upper bound of the variable;= expression, == expressionspei�es a �xed value of the variable;Examplesvar x >= 0;var y{I,J};var make{p in prd}, integer, >= ommit[p℄, <= market[p℄;var store{raw, 1..T+1} >= 0;var z{i in I, j in J} >= i+j;The variable statement delares a variable. If the subsript domain is not spei�ed,the variable is a simple (salar) variable, otherwise it is a n-dimensional array of elementalvariables.Elemental variable(s) assoiated with the model variable (if it is a simple variable) or itsmembers (if it is an array) orrespond to the variables in the LP/MIP problem formulation

Chapter 4: Statements 27(see Setion \Linear programming problem"). Note that only the elemental variables atu-ally referened in some onstraints and/or objetives are inluded in the LP/MIP probleminstane to be generated.The type attributes integer and binary restrit the variable to be integer or binary,respetively. If no type attribute is spei�ed, the variable is ontinuous. If all variables inthe model are ontinuous, the orresponding problem is of LP lass. If there is at least oneinteger or binary variable, the problem is of MIP lass.The lower bound (>=) attribute spei�es a numeri expression for omputing the lowerbound of the variable. At most one lower bound an be spei�ed. By default all variables(exept binary ones) have no lower bounds, so if a variable is required to be non-negative,its zero lower bound should be expliitly spei�ed.The upper bound (<=) attribute spei�es a numeri expression for omputing the upperbound of the variable. At most one upper bound attribute an be spei�ed.The �xed value (=) attribute spei�es a numeri expression for omputing the value,at whih the variable is �xed. This attribute annot be spei�ed along with lower/upperbound attributes.4.4 Constraint statement� �subjet to name alias domain : expression , = expression ;subjet to name alias domain : expression , <= expression ;subjet to name alias domain : expression , >= expression ;subjet to name alias domain : expression , <= expression , <= expression ;subjet to name alias domain : expression , >= expression , >= expression ;
 	Where: name is the symboli name of the onstraint;alias is an optional string literal whih spei�es the alias of the onstraint;domain is an optional indexing expression whih spei�es the subsript domainof the onstraint;expressions are linear expressions for omputing omponents of the onstraint.(Commae following expressions may be omitted.)Note: The keyword subjet to may be redued to subj to, or to s.t., or be omittedat all.Exampless.t. r: x + y + z, >= 0, <= 1;limit{t in 1..T}: sum{j in prd} make[j,t℄ <= max_prd;subjet to balane{i in raw, t in 1..T}:store[i,t+1℄ - store[i,t℄ - sum{j in prd} units[i,j℄ * make[j,t℄;subjet to rlim 'regular-time limit' {t in time}:sum{p in prd} pt[p℄ * rprd[p,t℄ <= 1.3 * dpp[t℄ * rews[t℄;The onstraint statement delares a onstraint. If the subsript domain is not spei-�ed, the onstraint is a simple (salar) onstraint, otherwise it is a n-dimensional array ofelemental onstraints.

Chapter 4: Statements 28Elemental onstraint(s) assoiated with the model onstraint (if it is a simple onstraint)or its members (if it is an array) orrespond to the linear onstraints in the LP/MIP problemformulation (see Setion \Linear programming problem").If the onstraint has the form of equality or single inequality, i.e. inludes two expres-sions, one of whih follows the olon and other follows the relation sign =, <=, or >=, bothexpressions in the statement an be linear expressions. If the onstraint has the form ofdouble inequality, i.e. inludes three expressions, the middle expression an be a linearexpression while the leftmost and rightmost ones an be only numeri expressions.Generating the model is, generally speaking, generating its onstraints, whih are al-ways evaluated for the entire subsript domain. Evaluating onstraints leads, in turn, toevaluating other model objets suh as sets, parameters, and variables.Construting the atual linear onstraint inluded in the problem instante, whih (on-straint) orresponds to a partiular elemental onstraint, is performed as follows.If the onstraint has the form of equality or single inequality, evaluation of both linearexpressions gives two resultant linear forms:f = a1x1 + a2x2 + : : :+ anxn + a0;g = b1x1 + b2x2 + : : :+ bnxn + b0;where x1, x2, : : : , xn are elemental variables, a1, a2, : : : , an, b1, b2, : : : , bn are numerioeÆients, a0 and b0 are onstant terms. Then all linear terms of f and g are arried tothe left-hand side, and the onstant terms are arried to the right-hand side that gives the�nal elemental onstraint in the standard form:(a1 � b1)x1 + (a2 � b2)x2 + : : : + (an � bn)xn8<:=��9=; b0 � a0:If the onstraint has the form of double inequality, evaluation of the middle linear ex-pression gives the resultant linear form:f = a1x1 + a2x2 + : : :+ anxn + a0;and evaluation of the leftmost and rightmost numeri expressions gives two numeri values land u. Then the onstant term of the linear form is arried to both left-hand and right-handsides that gives the �nal elemental onstraint in the standard form:l � a0 � a1x1 + a2x2 + : : :+ anxn � u� a0:4.5 Objetive statement� �minimize name alias domain : expression ;maximize name alias domain : expression ;
 	Where: name is the symboli name of the objetive;alias is an optional string literal whih spei�es the alias of the objetive;

Chapter 4: Statements 29domain is an optional indexing expression whih spei�es the subsript domainof the objetive;expression is an linear expression for omputing the linear form of the objetiveExamplesminimize obj: x + 1.5 * (y + z);maximize total_profit: sum{p in prd} profit[p℄ * make[p℄;The objetive statement delares an objetive. If the subsript domain is not spei�ed,the objetive is a simple (salar) objetive. Otherwise it is a n-dimensional array of elementalobjetives.Elemental objetive(s) assoiated with the model objetive (if it is a simple objetive) orits members (if it is an array) orrespond to general linear onstraints in the LP/MIP prob-lem formulation (see Setion \Linear programming problem"). However, unlike onstraintsthe orresponding linear forms are free (unbounded).Construting the atual linear onstraint inluded in the problem instane, whih (on-straint) orresponds to a partiular elemental objetive, is performed as follows. The linearexpression spei�ed in the objetive statement is evaluated that gives the resultant linearform: f = a1x1 + a2x2 + : : :+ anxn + a0;where x1, x2, . . . , xn are elemental variables, a1, a2, . . . , an are numeri oeÆients, a0 isthe onstant term. Then the linear form is used to onstrut the �nal elemental onstraintin the standard form: �1 < a1x1 + a2x2 + : : :+ anxn + a0 < +1:As a rule the model desription ontains only one objetive statement that de�nes theobjetive funtion (1) used in the problem instane. However, it is allowed to delarearbitrary number of objetives, in whih ase the atual objetive funtion is the �rstobjetive enountered in the model desription. Other objetives are also inluded in theproblem instane, but they do not a�et the objetive funtion.4.6 Solve statement� �solve ;
 	Note: The solve statement is optional and an be used only one. If no solve statementis used, one is assumed at the end of the model setion.The solve statement auses solving the model, i.e. omputing numeri values of all modelvariables. This allows using variables in statements below the solve statement in the sameway as if they were numeri parameters.Note that variable, onstraint, and objetive statements annot be used below the solvestatement, i.e. all prinipal omponents of the model must be desribed above the solvestatement.

Chapter 4: Statements 304.7 Chek statement� �hek domain : expression ;
 	Where: domain is an optional indexing expression whih spei�es the subsript domainof the hek statement;expression is an logial expression whih spei�es the logial ondition to beheked. (The olon preeding expression may be omitted.)Exampleshek: x + y <= 1 and x >= 0 and y >= 0;hek sum{i in ORIG} supply[i℄ = sum{j in DEST} demand[j℄;hek{i in I, j in 1..10}: S[i,j℄ in U[i℄ union V[j℄;The hek statement allows heking the resultant value of an logial expression spei�edin the statement. If the value is false, the model translator reports an error.If the subsript domain is not spei�ed, the hek is performed only one. Speifyingthe subsript domain allows performing multiple heks for every n-tuple in the domainset. In the latter ase the logial expression may inlude dummy indies introdued in theorresponding indexing expression.4.8 Display statement� �display domain : item , . . . , item ;
 	Where: domain is an optional indexing expression whih spei�es the subsript domainof the display statement;item, . . . , item are items to be displayed. (The olon preeding the �rst itemmay be omitted.)Examplesdisplay: 'x =', x, 'y =', y, 'z =', z;display sqrt(x ** 2 + y ** 2 + z ** 2);display{i in I, j in J}: i, j, a[i,j℄, b[i,j℄;The display statement evaluates all items spei�ed in the statement and writes theirvalues to the terminal in plain text format.If the subsript domain is not spei�ed, items are evaluated and then displayed onlyone. Speifying the subsript domain auses evaluating and displaying items for everyn-tuple in the domain set. In the latter ase items may inlude dummy indies introduedin the orresponding indexing expression.Item to be displayed an be a model objet (set, parameter, variable, onstraint, obje-tive) or an expression.If the item is a omputable objet (i.e. a set or parameter provided with the assignattribute), the objet is evaluated over the entire domain and then its ontent (i.e. theontent of the objet array) is displayed. Otherwise, if the item is not a omputable objet,

Chapter 4: Statements 31only its urrent ontent (i.e. the members atually generated during the model evaluation) isdisplayed. Note that if the display statement is used above the solve statement and the itemis a variable, its displayed \value" means \elemental variable", not a numeri value, whihthe variable ould have in some solution obtained by the solver. To display a numeri valueof a variable the display statement should be used below the solve statement. Analogously, ifthe item is a onstraint or objetive, its \value" means \elemental onstraint" or \elementalobjetive", not a numeri value.If the item is an expression, the expression is evaluated and its resultant value is dis-played.4.9 Printf statement� �printf domain : format , expression , . . . , expression ;printf domain : format , expression , . . . , expression > �lename ;printf domain : format , expression , . . . , expression >> �lename ;
 	Where: domain is an optional indexing expression whih spei�es the subsript domainof the printf statement;format is a symboli expression whose value spei�es a format ontrol string.(The olon preeding the format expression may be omitted.)expression, . . . , expression are zero or more expressions whose values have tobe formatted and printed. Eah expression must be of numeri, symboli, orlogial type.�lename is a symboli expression whose value spei�es the name of a text �le,to whih the printf output should be redireted. The ag > means reating anew empty �le while the ag >> means appending the output to an existing �le.If no �le name is spei�ed, the output is written to the terminal.Examplesprintf 'Hello, world!\n';printf: "x = %.3f; y = %.3f; z = %.3f\n", x, y, z > "result.txt";printf{i in I, j in J}: "flow from %s to %s is %d\n", i, j, x[i,j℄;printf{i in I} 'total flow from %s is %g\n', i, sum{j in J} x[i,j℄;printf{k in K} "x[%s℄ = " & (if x[k℄ < 0 then "?" else "%g"), k, x[k℄;The printf statement is similar to the display statement, however, it allows formattingthe data to be written.If the subsript domain is not spei�ed, the printf statement is exeuted only one.Speifying the subsript domain auses exeuting the printf statement for every n-tuplein the domain set. In the latter ase format and expressions may inlude dummy indiesintrodued in the orresponding indexing expression.The format ontrol string is a value of the symboli expression format spei�ed in theprintf statement. It is omposed of zero or more diretives as follows: ordinary haraters(not %), whih are opied unhanged to the output stream, and onversion spei�ations,

Chapter 4: Statements 32eah of whih auses evaluating orresponding expression spei�ed in the printf statement,formatting it, and writing the resultant value to the output stream.Conversion spei�ations whih may be used in the format ontrol string are the follow-ing: d, i, f, F, e, E, g, G, and s. These spei�ations have the same syntax and semantisas in the C programming language.4.10 For statement� �for domain : statementfor domain : { statement . . . statement }
 	Where: domain is an indexing expression whih spei�es the subsript domain of thefor statement. (The olon following the indexing expression may be omitted.)statement is a statement whih should be exeuted under ontrol of the forstatement;statement, . . . , statement is a sequene of statements (enlosed in urly braes)whih should be exeuted under ontrol of the for statement.Note: Only the following statements are allowed within the for statement: hek,display, printf, and another for.Examplesfor {(i,j) in E: i != j}{ printf "flow from %s to %s is %g\n", i, j, x[i,j℄;hek x[i,j℄ >= 0;}for {i in 1..n}{ for {j in 1..n} printf " %s", if x[i,j℄ then "Q" else ".";printf("\n");}for {1..72} printf("*");The for statement auses exeuting a statement or a sequene of statements spei�edas part of the for statement for every n-tuple in the domain set. Thus, statements withinthe for statement may refer to dummy indies introdued in the orresponding indexingexpression.

Chapter 5: Model data 335 Model dataModel data inlude elemental sets, whih are \values" of model sets, and numeri andsymboli values of model parameters.In MathProg there are two di�erent ways to saturate model sets and parameters withdata. One way is simply providing neessary data using the assign attribute. However, inmany ases it is more pratial to separate the model itself and partiular data needed forthe model. For the latter reason in MathProg there is other way, when the model desriptionis divided into two parts: model setion and data setion.Model setion is a main part of the model desription that ontains delarations of allmodel objets and is ommon for all problems based on that model.Data setion is an optional part of the model desription that ontains model dataspei� for a partiular problem.In MathProg model and data setions an be plaed either in one text �le or in twoseparate text �les.If both model and data setions are plaed in one �le, the �le is omposed as follows:+------------+| statement || statement || . . . || statement || data; || data blok || data blok || . . . || data blok || end; |+------------+If the model and data setions are plaed in two separate �les, the �les are omposed asfollows:+------------+ +------------+| statement | | data; || statement | | data blok || . . . | | data blok || statement | | . . . || end; | | data blok || | | end; |+------------+ +------------+Model file Data fileNote: If the data setion is plaed in a separate �le, the keyword data is optional andmay be omitted along with the semiolon that follows it.

Chapter 5: Model data 345.1 Coding data setionThe data setion is a sequene of data bloks in various formats, whih are disussed infollowing subsetions. The order, in whih data bloks follow in the data setion, may bearbitrary, not neessarily the same as in whih the orresponding model objets follow inthe model setion.The rules of oding the data setion are ommonly the same as the rules of oding themodel desription (for details see Setion \Coding model desription"), i.e. data bloksare omposed from basi lexial units suh as symboli names, numeri and string literals,keywords, delimiters, and omments. However, for the sake of onveniene and improvingreadability there is one deviation from the ommon rule: if a string literal onsists of onlyalphanumeri haraters (inluding the undersore harater), the signs + and -, and/or thedeimal point, it may be oded without bordering (single or double) quotes.All numeri and symboli material provided in the data setion is oded in the form ofnumbers and symbols, i.e. unlike the model setion no expressions are allowed in the datasetion. Nevertheless the signs + and - an preede numeri literals to allow oding signednumeri quantities, in whih ase there must be no white-spae haraters between the signand following numeri literal (if there is at least one white-spae, the sign and followingnumeri literal are reognized as two di�erent lexial units).5.2 Set data blok� �set name , reord , . . . , reord ;set name [symbol , . . . , symbol ℄ , reord , . . . , reord ;
 	Where: name is a symboli name of the set;symbol, . . . , symbol are subsripts whih speify a partiular member of theset (if the set is an array, i.e. a set of sets);reord, . . . , reord are data reords.Note: Commae preeding data reords may be omitted.Data reords::= is a non-signi�ant data reord whih may be used freely to improve readability;(slie) spei�es a slie;simple-data spei�es set data in the simple format;: matrix-dataspei�es set data in the matrix format;(tr) : matrix-dataspei�es set data in the transposed matrix format. (In this ase the olonfollowing the keyword (tr) may be omitted.)

Chapter 5: Model data 35Examplesset month := Jan Feb Mar Apr May Jun;set month "Jan", "Feb", "Mar", "Apr", "May", "Jun";set A[3,Mar℄ := (1,2) (2,3) (4,2) (3,1) (2,2) (4,4) (3,4);set A[3,'Mar'℄ := 1 2 2 3 4 2 3 1 2 2 4 4 2 4;set A[3,'Mar'℄ : 1 2 3 4 :=1 - + - -2 - + + -3 + - - +4 - + - + ;set B := (1,2,3) (1,3,2) (2,3,1) (2,1,3) (1,2,2) (1,1,1) (2,1,1);set B := (*,*,*) 1 2 3, 1 3 2, 2 3 1, 2 1 3, 1 2 2, 1 1 1, 2 1 1;set B := (1,*,2) 3 2 (2,*,1) 3 1 (1,2,3) (2,1,3) (1,1,1);set B := (1,*,*) : 1 2 3 :=1 + - -2 - + +3 - + -(2,*,*) : 1 2 3 :=1 + - +2 - - -3 + - - ;(In these examples the set month is a simple set of singles, A is a 2-dimensional array ofdoubles, and B is a simple set of triples. Data bloks for the same set are equivalent in thesense that they speify the same data in di�erent formats.)The set data blok is used to speify a omplete elemental set, whih is assigned to a set(if it is a simple set) or one of its members (if the set is an array of sets).1Data bloks an be spei�ed only for non-omputable sets, i.e. sets whih have no assignattribute in the orresponding set statements.If the set is a simple set, only its symboli name should be given in the header of the datablok. Otherwise, if the set is a n-dimensional array, its symboli name should be providedwith a omplete list of subsripts separated by ommae and enlosed in square brakets tospeify a partiular member of the set array. The number of subsripts must be the sameas the dimension of the set array, where eah subsript must be a number or symbol.The elemental set de�ned in the set data blok is oded as a sequene of data reordsdesribed below.2Assign data reordThe assign (:=) data reord is a non-sign�ant element. It may be used for improvingreadability of data bloks.1 There is another way to speify data for a simple set along with data for parameters. This feature isdisussed in the next setion.2 Data reord is simply a tehnial term. It does not mean that data reords have any speial formatting.

Chapter 5: Model data 36Slie data reordThe slie data reord is a ontrol reord whih spei�es a slie of the elemental set de�nedin the data blok. It has the following syntati form:(s1 , s2 , . . . , sn)where s1, s2, . . . , sn are omponents of the slie.Eah omponent of the slie an be a number or symbol or the asterisk (*). The numberof omponents in the slie must be the same as the dimension of n-tuples in the elementalset to be de�ned. For instane, if the elemental set ontains 4-tuples (quadruples), the sliemust have four omponents. The number of asterisks in the slie is alled slie dimension.The e�et of using slies is the following. If a m-dimensional slie (i.e. a slie whihhas m asterisks) is spei�ed in the data blok, all subsequent data reords must spei�ytuples of the dimension m. Whenever a m-tuple is enountered, eah asterisk in the slieis replaed by orresponding omponents of the m-tuple that gives the resultant n-tuple,whih is inluded in the elemental set to be de�ned. For example, if the slie (a,*,1,2,*)is in e�et, and 2-tuple (3,b) is enountered in a subsequent data reord, the resultant5-tuple inluded in the elemental set is (a,3,1,2,b).The slie that has no asterisks itself de�nes a omplete n-tuple, whih is inluded in theelemental set.Being one spei�ed the slie e�ets until either a new slie or the end of data blok hasbeen enountered. Note that if there is no slie spei�ed in the data blok, a dummy one,omponents of whih are all asterisks, is assumed.Simple data reordThe simple data reord de�nes one n-tuple in simple format and has the following syntatiform: t1 , t2 , . . . , tnwhere t1, t2, . . . , tn are omponents of the n-tuple. Eah omponent an be a number orsymbol. Commae between omponents are optional and may be omitted.Matrix data reordThe matrix data reord de�nes several 2-tuples (doubles) in matrix format and has thefollowing syntati form:: 1 2 : : : n :=r1 a11 a12 : : : a1nr2 a21 a22 : : : a2n: : : : : : : : : : : : : : :rm am1 am2 : : : amnwhere r1, r2, . . . , rm are numbers and/or symbols whih orrespond to rows of the matrix,1, 2, . . . , n are numbers and/or symbols whih orrespond to olumns of the matrix, a11,a12, . . . , amn are the matrix elements, whih an be either the sign + or the sign -. (Inthis data reord the delimiter : preeding the olumn list and the delimiter := followingthe olumn list annot be omitted.)Eah element aij of the matrix data blok (where 1 � i � m, 1 � j � n) orresponds to2-tuple (ri; j). If aij is the plus sign (+), the orresponding 2-tuple (or a longer n-tuple, if

Chapter 5: Model data 37a slie is used) is inluded in the elemental set. Otherwise, if aij is the minus sign (-) sign,the orresponding 2-tuple is not inluded in the elemental set.Sine the matrix data reord de�nes 2-tuples, either the elemental set must onsist of2-tuples or the slie urrently used must be 2-dimensional.Transposed matrix data reordThe transposed matrix data reord has the following syntati form:(tr) : 1 2 : : : n :=r1 a11 a12 : : : a1nr2 a21 a22 : : : a2n: : : : : : : : : : : : : : :rm am1 am2 : : : amn(In this ase the delimiter : following the keyword (tr) is optional and may be omitted.)This data reord is ompletely analogous to the matrix data reord (see above) with theonly exeption that eah element aij of the matrix orresponds to 2-tuple (j ; ri).Being one spei�ed the (tr) indiator e�ets on all subsequent data reords until eithera slie or the end of data blok has been enountered.5.3 Parameter data blok� �param name , reord , . . . , reord ;param name default value , reord , . . . , reord ;param : tabbing-data ;param default value : tabbing-data ;
 	Where: name is a symboli name of the parameter;value is an optional default value of the parameter;reord, . . . , reord are data reords.tabbing-data spei�es parameter data in the tabbing format.Note: Commae preeding data reords may be omitted.Data reords::= is a non-signi�ant data reord whih may be used freely to improve readability;[slie ℄ spei�es a slie;plain-data spei�es parameter data in the plain format;: tabular-dataspei�es parameter data in the tabular format;(tr) : tabular-dataspei�es parameter data in the transposed tabular format. (In this ase theolon following the keyword (tr) may be omitted.)

Chapter 5: Model data 38Examplesparam T := 4;param month := 1 Jan 2 Feb 3 Mar 4 Apr 5 May;param month := [1℄ 'Jan', [2℄ 'Feb', [3℄ 'Mar', [4℄ 'Apr', [5℄ 'May';param init_stok := iron 7.32 nikel 35.8;param init_stok [*℄ iron 7.32, nikel 35.8;param ost [iron℄ .025 [nikel℄ .03;param value := iron -.1, nikel .02;param : init_stok ost value :=iron 7.32 .025 -.1nikel 35.8 .03 .02 ;param : raw : init stok ost value :=iron 7.32 .025 -.1nikel 35.8 .03 .02 ;param demand default 0 (tr): FRA DET LAN WIN STL FRE LAF :=bands 300 . 100 75 . 225 250oils 500 750 400 250 . 850 500plate 100 . . 50 200 . 250 ;param trans_ost :=[*,*,bands℄: FRA DET LAN WIN STL FRE LAF :=GARY 30 10 8 10 11 71 6CLEV 22 7 10 7 21 82 13PITT 19 11 12 10 25 83 15[*,*,oils℄: FRA DET LAN WIN STL FRE LAF :=GARY 39 14 11 14 16 82 8CLEV 27 9 12 9 26 95 17PITT 24 14 17 13 28 99 20[*,*,plate℄: FRA DET LAN WIN STL FRE LAF :=GARY 41 15 12 16 17 86 8CLEV 29 9 13 9 28 99 18PITT 26 14 17 13 31 104 20 ;The parameter data blok is used to speify omplete data for a parameter (or parame-ters, if data are spei�ed in the tabbing format) whose name is given in the blok.Data bloks an be spei�ed only for the parameters, whih are non-omputable, i.e.whih have no assign attribute in the orresponding parameter statements.Data de�ned in the parameter data blok are oded as a sequene of data reords de-sribed below. Additionally the data blok an be provided with the optional defaultattribute, whih spei�es a default numeri or symboli value of the parameter (parame-ters). This default value is assigned to the parameter or its members, if no appropriatevalue is de�ned in the parameter data blok. The default attribute annot be used, if itis already spei�ed in the orresponding parameter statement(s).Assign data reordThe assign (:=) data reord is a non-sign�ant element. It may be used for improvingreadability of data bloks.

Chapter 5: Model data 39Slie data reordThe slie data reord is a ontrol reord whih spei�es a slie of the parameter array. Ithas the following syntati form:[s1 , s2 , . . . , sn ℄where s1, s2, . . . , sn are omponents of the slie.Eah omponent of the slie an be a number or symbol or the asterisk (|*|). Thenumber of omponents in the slie must be the same as the dimension of the parameter.For instane, if the parameter is a 4-dimensional array, the slie must have four omponents.The number of asterisks in the slie is alled slie dimension.The e�et of using slies is the following. If a m-dimensional slie (i.e. a slie whih has masterisks) is spei�ed in the data blok, all subsequent data reords must speify subsriptsof the parameter members as if the parameter were m-dimensional, not n-dimensional.Whenever m subsripts are enountered, eah asterisk in the slie is replaed by orre-sponding subsript that gives n subsripts, whih de�ne the atual parameter member. Forexample, if the slie [a,*,1,2,*℄ is in e�et, and the subsripts 3 and b are enountered ina subsequent data reord, the omplete subsript list used to hoose a parameter memberis [a,3,1,2,b℄.It is allowed to speify a slie that has no asterisks. Suh slie itself de�nes a ompletesubsript list, in whih ase the next data reord an de�ne only a single value of theorresponding parameter member.Being one spei�ed the slie e�ets until either a new slie or the end of data blok hasbeen enountered. Note that if there is no slie spei�ed in the data blok, a dummy one,omponents of whih are all asterisks, is assumed.Plain data reordThe plain data reord de�nes the subsript list and a single value in plain format. Thisreord has the following syntati form:t1 , t2 , . . . , tn , vwhere t1, t2, . . . , tn are subsripts, v is a value. Eah subsript as well as the value an bea number or symbol. Commae following subsripts are optional and may be omitted.In ase of 0-dimensional parameter or slie the plain data reord have no subsripts andonsists of a single value only.Tabular data reordThe tabular data reord de�nes several values, where eah value is provided with twosubsripts. This reord has the following syntati form:: 1 2 : : : n :=r1 a11 a12 : : : a1nr2 a21 a22 : : : a2n: : : : : : : : : : : : : : :rm am1 am2 : : : amnwhere r1, r2, . . . , rm are numbers and/or symbols whih orrespond to rows of the table,1, 2, . . . , n are numbers and/or symbols whih orrespond to olumns of the table, a11,a12, . . . , amn are the table elements. Eah element an be a number or symbol or the

Chapter 5: Model data 40single deimal point. (In this data reord the delimiter : preeding the olumn list and thedelimiter := following the olumn list annot be omitted.)Eah element aij of the tabular data blok (1 � i � m, 1 � j � n) de�nes two subsripts,where the �rst subsript is ri, and the seond one is j . These subsripts are used inonjuntion with the urrent slie to form the omplete subsript list whih identi�es apartiular member of the parameter array. If aij is a number or symbol, this value isassigned to the parameter member. However, if aij is the single deimal point, the memberis assigned a default value spei�ed either in the parameter data blok or in the parameterstatement, or, if no default value is spei�ed, the member remains unde�ned.Sine the tabular data reord provides two subsripts for eah value, either the parameteror the slie urrently used must be 2-dimensional.Transposed tabular data reordThe transposed tabular data reord has the following syntati form:(tr) : 1 2 : : : n :=r1 a11 a12 : : : a1nr2 a21 a22 : : : a2n: : : : : : : : : : : : : : :rm am1 am2 : : : amn(In this ase the delimiter : following the keyword (tr) is optional and may be omitted.)This data reord is ompletely analogous to the tabular data reord (see above) with theonly exeption that the �rst subsript de�ned by the element aij is j while the seond oneis ri.Being one spei�ed the (tr) indiator e�ets on all subsequent data reords until eithera slie or the end of data blok has been enountered.Tabbing data formatThe parameter data blok in the tabbing format has the following syntati form:param default value : s : p1 ; p2 ; : : : ; pk :=t11 ; t12 ; : : : ; t1n ; a11 ; a12 ; : : : ; a1kt21 ; t22 ; : : : ; t2n ; a21 ; a22 ; : : : ; a2k: : : : : : : : : : : : : : : : : : : :tm1 ; tm2 ; : : : ; tmn ; am1 ; am2 ; : : : ; amk ;Note: The keyword default may be omitted along with a value following it.The symboli name s of a set may be omitted along with the olon following it.All omae are optional and may be omitted.The data blok in the tabbing format shown above is exatly equivalent to the followingdata bloks:set s := (t11; t12; : : : ; t1n) (t21; t22; : : : ; t2n) : : : (tm1; tm2; : : : ; tmn) ;param pj default value :=[t11; t12; : : : ; t1n℄ a1j [t21; t22; : : : ; t2n℄ a2j : : : [tm1; tm2; : : : ; tmn℄ amj ;where j = 1, 2, . . . , k.

Appendix A: Solving models with glpsol 41Appendix A Solving models with glpsolThe GLPK pakage1 inludes the program glpsol, whih is a stand-alone LP/MIP solver.This program an be invoked from the ommand line or from the shell to solve modelswritten in the GNU MathProg modeling language.In order to tell the solver that the input �le ontains a model desription, the option--model should be spei�ed in the ommand line. For example:glpsol --model foobar.modSometimes it is neessary to use the data setion plaed in another �le, in whih asethe following ommand may be used:glpsol --model foobar.mod --data foobar.datNote that if the model �le also ontains the data setion, that setion is ignored.If the model desription ontains some display and/or print statements, by default theoutput goes to the terminal. In order to rediret the output to a �le the following ommandmay be used:glpsol --model foobar.mod --display foobar.outIf you need to look at the problem whih has been generated by the model translator,the option --wtxt an be spei�ed in the ommand line as follows:glpsol --model foobar.mod --wtxt foobar.txtin whih ase the problem will be written to the �le foobar.txt in plain text format suitablefor visual analysis.Sometimes it is neessary merely to hek the model desription not solving the generatedproblem. In this ase the option --hek should be given in the ommand line, for example:glpsol --hek --model foobar.mod --wtxt foobar.txtIn order to write a numeri solution obtained by the solver the following ommand maybe used:glpsol --model foobar.mod --output foobar.solin whih ase the solution will be written to the �le foobar.sol in plain text format.Complete list of the glpsol options an be found in the referene manual inluded inthe GLPK distribution.

1 http://www.gnu.org/software/glpk/

Appendix B: Example model desription 42Appendix B Example model desriptionModel desription written in GNU MathProgHere is a omplete example of the model desription written in the GNUMathProg modelinglanguage.# A TRANSPORTATION PROBLEM## This problem finds a least ost shipping shedule that meets# requirements at markets and supplies at fatories.## Referenes:# Dantzig G B, "Linear Programming and Extensions."# Prineton University Press, Prineton, New Jersey, 1963,# Chapter 3-3.set I;/* anning plants */set J;/* markets */param a{i in I};/* apaity of plant i in ases */param b{j in J};/* demand at market j in ases */param d{i in I, j in J};/* distane in thousands of miles */param f;/* freight in dollars per ase per thousand miles */param {i in I, j in J} := f * d[i,j℄ / 1000;/* transport ost in thousands of dollars per ase */var x{i in I, j in J} >= 0;/* shipment quantities in ases */minimize ost: sum{i in I, j in J} [i,j℄ * x[i,j℄;/* total transportation osts in thousands of dollars */s.t. supply{i in I}: sum{j in J} x[i,j℄ <= a[i℄;/* observe supply limit at plant i */

Appendix B: Example model desription 43s.t. demand{j in J}: sum{i in I} x[i,j℄ >= b[j℄;/* satisfy demand at market j */data;set I := Seattle San-Diego;set J := New-York Chiago Topeka;param a := Seattle 350San-Diego 600;param b := New-York 325Chiago 300Topeka 275;param d : New-York Chiago Topeka :=Seattle 2.5 1.7 1.8San-Diego 2.5 1.8 1.4 ;param f := 90;end;Generated LP problemHere is the result of the translation of the example model produed by the solver glpsoland written in the free MPS format.NAME transpROWSN ostL supply[Seattle℄L supply[San-Diego℄G demand[New-York℄G demand[Chiago℄G demand[Topeka℄COLUMNSx[Seattle,New-York℄ ost 0.225 supply[Seattle℄ 1x[Seattle,New-York℄ demand[New-York℄ 1x[Seattle,Chiago℄ ost 0.153 supply[Seattle℄ 1x[Seattle,Chiago℄ demand[Chiago℄ 1x[Seattle,Topeka℄ ost 0.162 supply[Seattle℄ 1x[Seattle,Topeka℄ demand[Topeka℄ 1x[San-Diego,New-York℄ ost 0.225 supply[San-Diego℄ 1x[San-Diego,New-York℄ demand[New-York℄ 1x[San-Diego,Chiago℄ ost 0.162 supply[San-Diego℄ 1

Appendix B: Example model desription 44x[San-Diego,Chiago℄ demand[Chiago℄ 1x[San-Diego,Topeka℄ ost 0.126 supply[San-Diego℄ 1x[San-Diego,Topeka℄ demand[Topeka℄ 1RHSRHS1 supply[Seattle℄ 350 supply[San-Diego℄ 600RHS1 demand[New-York℄ 325 demand[Chiago℄ 300RHS1 demand[Topeka℄ 275ENDATAOptimal LP solutionHere is the optimal solution of the generated LP problem found by the solver glpsol andwritten in plain text format.Problem: transpRows: 6Columns: 6Non-zeros: 18Status: OPTIMALObjetive: ost = 153.675 (MINimum)No. Row name St Ativity Lower bound Upper bound Marginal------ ------------ -- ------------- ------------- ------------- -------------1 ost B 153.6752 supply[Seattle℄B 300 3503 supply[San-Diego℄NU 600 600 < eps4 demand[New-York℄NL 325 325 0.2255 demand[Chiago℄NL 300 300 0.1536 demand[Topeka℄NL 275 275 0.126No. Column name St Ativity Lower bound Upper bound Marginal------ ------------ -- ------------- ------------- ------------- -------------1 x[Seattle,New-York℄B 0 02 x[Seattle,Chiago℄B 300 03 x[Seattle,Topeka℄NL 0 0 0.0364 x[San-Diego,New-York℄B 325 05 x[San-Diego,Chiago℄NL 0 0 0.0096 x[San-Diego,Topeka℄B 275 0End of output

Aknowledgements 45AknowledgementsThe author would like to thank the following people, who kindly read, ommented, andorreted the draft of this manual:Juan Carlos Borras <borras�s.helsinki.fi>Harley Makenzie <hjm�bigpond.om>Robbie Morrison <robbie�atrix.o.nz>

