Repeated games

Vincent Conitzer

conitzer@cs.duke.edu

Repeated games

- In a (typical) repeated game,
- players play a normal-form game (aka. the stage game),
- then they see what happened (and get the utilities),
- then they play again,
- etc.
- Can be repeated finitely or infinitely many times
- Really, an extensive form game
- Would like to find subgame-perfect equilibria
- One subgame-perfect equilibrium: keep repeating some Nash equilibrium of the stage game
- But are there other equilibria?

Finitely repeated Prisoner's Dilemma

- Two players play the Prisoner's Dilemma k times

cooperate	defect	
cooperate	2,2	0,3
defect	3,0	1,1

- In the last round, it is dominant to defect
- Hence, in the second-to-last round, there is no way to influence what will happen
- So, it is optimal to defect in this round as well
- Etc.
- So the only equilibrium is to always defect

Modified Prisoner's Dilemma

- Suppose the following game is played twice

	cooperate	defect $_{1}$	defect $_{2}$
cooperate	5,5	0,6	0,6
defect $_{1}$	6,0	4,4	1,1
defect $_{2}$	6,0	1,1	2,2

- Consider the following strategy:
- In the first round, cooperate;
- In the second round, if someone defected in the first round, play defect $_{2}$; otherwise, play defect ${ }_{1}$
- If both players play this, is that a subgame perfect equilibrium?

Another modified Prisoner's Dilemma

- Suppose the following game is played twice

	cooperate	defect	crazy
cooperate	5,5	0,6	1,0
defect	6,0	4,4	1,0
crazy	0,1	0,1	0,0

-What are the subgame perfect equilibria?

- Consider the following strategy:
- In the first round, cooperate;
- In the second round, if someone played defect or crazy in the first round, play crazy; otherwise, play defect
- Is this a Nash equilibrium (not subgame perfect)?

Infinitely repeated games

- First problem: are we just going to add up the utilities over infinitely many rounds?
- Everyone gets infinity!
- (Limit of) average payoff: $\lim _{n \rightarrow \infty} \Sigma_{1 \leq t \leq n} u(t) / n$
- Limit may not exist...
- Discounted payoff: $\Sigma_{\mathrm{t}} \delta^{t} u(\mathrm{t})$ for some $\delta<1$

Infinitely repeated Prisoner's Dilemma

		defert
sopate	2, 2	0, 3
defect	3, 0	1,1

- Tit-for-tat strategy:
- Cooperate the first round,
- In every later round, do the same thing as the other player did in the previous round
- Is both players playing this a Nash/subgame-perfect equilibrium? Does it depend on δ ?
- Trigger strategy:
- Cooperate as long as everyone cooperates
- Once a player defects, defect forever
- Is both players playing this a subgame-perfect equilibrium?
- What about one player playing tit-for-tat and the other playing trigger?

Folk theorem(s)

- Can we somehow characterize the equilibria of infinitely repeated games?
- Subgame perfect or not?
- Averaged utilities or discounted?
- Easiest case: averaged utilities, no subgame perfection
- We will characterize what (averaged) utilities (u_{1}, u_{2}, \ldots, u_{n}) the agents can get in equilibrium
- The utilities must be feasible: there must be outcomes of the game such that the agents, on average, get these utilities
- They must also be enforceable: deviation should lead to punishment that outweighs the benefits of deviation
- Folk theorem: a utility vector can be realized by some Nash equilibrium if and only if it is both feasible and enforceable

Feasibility

2,2	0,3
3,0	1,1

- The utility vector $(2,2)$ is feasible because it is one of the outcomes of the game
- The utility vector $(1,2.5)$ is also feasible, because the agents could alternate between $(2,2)$ and $(0,3)$
- What about (.5, 2.75)?
- What about $(3,0.1)$?
- In general, convex combinations of the outcomes of the game are feasible
$-p_{1} a_{1}+p_{2} a_{2}+\ldots+p_{n} a_{n}$ is a convex combination of the a_{i} if the p_{i} sum to 1 and are nonnegative

Enforceability

$$
\begin{array}{l|l}
\hline 2,2 & 0,3 \\
\hline 3,0 & 1,1 \\
\hline
\end{array}
$$

- A utility for an agent is not enforceable if the agent can guarantee herself a higher utility
- E.g. a utility of .5 for player 1 is not enforceable, because she can guarantee herself a utility of 1 by defecting
- A utility of 1.2 for player 1 is enforceable, because player 2 can guarantee player 1 a utility of at most 1 by defecting
- What is the relationship to minimax strategies \& values?

Computing a Nash equilibrium in a 2player repeated game using folk theorem

- Average payoff, no subgame perfection
- Can be done in polynomial time:
- Compute minimum enforceable utility for each agent
- l.e., compute maxmin values \& strategies
- Find a feasible point where both players receive at least this utility
- E.g., both players playing their maxmin strategies
- Players play feasible point (by rotating through the outcomes), unless the other deviates, in which case they punish the other player by playing minmax strategy forever
- Minmax strategy easy to compute
- A more complicated (and earlier) algorithm by Littman \& Stone [04] computes a "nicer" and subgame-perfect equilibrium

Example Markov Decision Process (MDP)

- Machine can be in one of three states: good, deteriorating, broken
- Can take two actions: maintain, ignore

Stochastic games

- A stochastic game has multiple states that it can be in
- Each state corresponds to a normal-form game
- After a round, the game randomly transitions to another state
- Transition probabilities depend on state and actions taken
- Typically utilities are discounted over time

- 1 -state stochastic game = (infinitely) repeated game
- 1-agent stochastic game = Markov Decision Process (MDP)

Stationary strategies

- A stationary strategy specifies a mixed strategy for each state
- Strategy does not depend on history
- E.g., in a repeated game, stationary strategy = always playing the same mixed strategy
- An equilibrium in stationary strategies always exists [Fink 64]
- Each player will have a value for being in each state

Shapley's [1953] algorithm for 2-player zero-sum stochastic games (~value iteration)

- Each state s is arbitrarily given a value $\mathrm{V}(\mathrm{s})$
- Player 1's utility for being in state s
- Now, for each state, compute a normal-form game that takes these (discounted) values into account

$$
\begin{gathered}
-3+\delta(.7 * 2+.3 * 5) \\
=-3+2.9 \delta
\end{gathered}
$$

$*$	$-3+2.9 \delta$, $3-2.9 \delta$
$*$	$*$

- Solve for the value of the modified game (using LP)
- Make this the new value of s1
- Do this for all states, repeat until convergence
- Similarly, analogs of policy iteration [Pollatschek \& Avi-ltzhak] and Q-Learning [Littman 94, Hu \& Wellman 98] exist

