Utility theory

Vincent Conitzer

conitzer@cs.duke.edu

Risk attitudes

- Which would you prefer?
- A lottery ticket that pays out $\$ 10$ with probability .5 and $\$ 0$ otherwise, or
- A lottery ticket that pays out $\$ 3$ with probability 1
- How about:
- A lottery ticket that pays out $\$ 100,000,000$ with probability .5 and $\$ 0$ otherwise, or
- A lottery ticket that pays out $\$ 30,000,000$ with probability 1
- Usually, people do not simply go by expected value
- An agent is risk-neutral if she only cares about the expected value of the lottery ticket
- An agent is risk-averse if she always prefers the expected value of the lottery ticket to the lottery ticket
- Most people are like this
- An agent is risk-seeking if she always prefers the lottery ticket to the expected value of the lottery ticket

Decreasing marginal utility

- Typically, at some point, having an extra dollar does not make people much happier (decreasing marginal utility)

Maximizing expected utility

- Lottery 1 : get $\$ 1500$ with probability 1
- gives expected utility 2
- Lottery 2: get $\$ 5000$ with probability $.4, \$ 200$ otherwise
- gives expected utility $.4 * 3+.6 * 1=1.8$
- (expected amount of money $\left.=.4^{*} \$ 5000+.6 * \$ 200=\$ 2120>\$ 1500\right)$
- So: maximizing expected utility is consistent with risk aversion

Different possible risk attitudes

under expected utility maximization

- Green has decreasing marginal utility \rightarrow risk-averse
- Blue has constant marginal utility \rightarrow risk-neutral
- Red has increasing marginal utility \rightarrow risk-seeking Grey's marginal utility is sometimes increasing, sometimes decreasing \rightarrow neither risk-averse (everywhere) nor risk-seeking (everywhere)

What is utility, anyway?

- Function u: $\mathrm{O} \rightarrow \mathfrak{R}$ (O is the set of "outcomes" that lotteries randomize over)
- What are its units?
- It doesn't really matter
- If you replace your utility function by $u^{\prime}(0)=a+$ bu(o), your behavior will be unchanged
- Why would you want to maximize expected utility?
- This is a question about preferences over lotteries

Compound lotteries

- For two lottery tickets L and L', let pL + (1-p)L' be the "compound" lottery ticket where you get lottery ticket L with probability p, and L' with probability 1-p

Sufficient conditions for expected utility

- $L \geq$ L' means that L is (weakly) preferred to L' - (\geq should be complete, transitive)
- Expected utility theorem. Suppose
- (continuity axiom) for all L, L', L", \{p: pL + (1-p)L' \geq L" $\}$ and $\left\{p: p L+(1-p) L^{\prime} \leq L^{\prime \prime}\right\}$ are closed sets, and
- (independence axiom - more controversial) for all $L, L^{\prime}, L^{\prime \prime}, p>0$, we have $L \geq L^{\prime}$ if and only if $p L+(1-$ p) $L^{\prime \prime} \geq p L^{\prime}+(1-p) L^{\prime \prime}$

Then, there exists a function $u: O \rightarrow \mathfrak{R}$ so that L \geq L' if and only if L gives a higher expected value of u than L'

