HOMEWORK 8

8.1: Actually any MST must contain the second smallest edge e. We prove that by contradiction. Assume there exists an MST T which does not contain e. Adding e to the MST forms a cycle p. The maximum-weight edge e' in p must be heavier than e because a cycle consists of three edges at least, and e is the second smallest edge in G. Then breaking the cycle p by taking off e' will create another spanning tree T' with less weight than T, which is an MST by assumption. From the argument, we can also see that the statement does not hold for the third smallest edge.

8.2: The shortest-path tree rooted at A is $\{AB, AC\}$, while the minimum spanning tree is $\{AB, BC\}$.
8.3: Move P to the position where the characters of T and P are unmatched, instead of just moving ahead by 1 each time.

\[
\text{NAIVE-PATTERN-MATCHER}(T, P) \\
n \leftarrow \text{length}[T] \\
m \leftarrow \text{length}[P] \\
s \leftarrow 0 \\
\text{while } s \leq n - m \\
\quad j \leftarrow 1 \\
\quad \text{while } j \leq m \text{ and } P[j] = T[s + j] \\
\quad \quad j \leftarrow j + 1 \\
\quad \text{if } j > m \\
\quad \quad \text{then print "Pattern occurs at shift" } s \\
\quad s \leftarrow s + \max(1, j - 1)
\]

8.4: In order to prove that $B_{n \times n} = A_{n \times m}^T A_{m \times n}$ is symmetric, we need to show that $B[i, j] = B[j, i]$, for any $i, j \in \{1, 2, \ldots, n\}$. By the definition of matrix multiplication, we have

\[
B[i, j] = \sum_{k=1}^{m} A[i, k] A[k, j] = \sum_{k=1}^{m} A[k, i] A[k, j], \quad \text{and} \\
B[j, i] = \sum_{k=1}^{m} A[j, k] A[k, i] = \sum_{k=1}^{m} A[k, j] A[k, i]
\]

8.5: Append the following piece of codes to MAXPROB. The running time for this operation is $O(n)$.

\[
i \leftarrow 1 \\
\text{while } i \leq n \\
\quad \text{print } q[i] \\
\quad \text{print SPACE} \\
\quad i \leftarrow i + |q[i]|
\]

8.6: The basic idea is scanning the sequence A of n numbers, and appending the current number to the longest monotonically increasing subsequence before it whose last element is smaller than the number. We use auxiliary arrays $S1[1..n], S2[1..n]$, so that $S1[i]$ points to the last element of the i-size candidate subsequence currently maintained, and $S2[i]$ points to the element right before $A[i]$ in the same subsequence. L maintains the longest length.

\[
\text{FIND-LMIS}(A, n) \\
\quad \text{for } i \leftarrow 1 \text{ to } n \\
\quad \quad S1[i] \leftarrow 0 \\
\quad \quad S2[i] \leftarrow 0 \\
\quad \quad S1[1] \leftarrow 1 \\
\quad \quad L \leftarrow 1 \\
\quad \text{for } i \leftarrow 2 \text{ to } n \\
\quad \quad \text{if } A[i] > A[S1[L]] \\
\quad \quad \quad S1[L] \leftarrow S1[L] \\
\quad \quad \quad S2[L] \leftarrow i
\]

2
\[L \leftarrow L + 1 \]
\[S1[L] \leftarrow i \]
\[S2[i] \leftarrow S1[L - 1] \]
\textbf{else if} \ A[i] < A[S1[1]]
\[S1[1] \leftarrow i \]
\textbf{else for} \ j \leftarrow L - 1 \textbf{downto} 1
\textbf{if} \ A[S1[j]] < A[i] < A[S1[j + 1]]
\[S1[j + 1] \leftarrow i \]
\[S2[i] \leftarrow S1[j] \]
\textbf{break}
\[p \leftarrow S1[L] \]
\textbf{for} \ i \leftarrow L \textbf{downto} 1
\[LMIS[i] \leftarrow A[p] \]
\[p \leftarrow S2[p] \]

Notice that \(A[S1[i]] \leq A[S1[j]] \), where \(i < j \). We can improve the above algorithm from \(O(n^2) \) to \(O(n \log n) \) by using binary search in appending the current number.