Wordcounting, sets, and the web

- How does Google store all web pages that include a reference to “peanut butter with mustard”
 - What efficiency issues exist?
 - Why is Google different (better)?

- How do `readset.cpp` and `readset2.cpp` differ?
 - Mechanisms for insertion and search
 - How do we discuss? How do we compare performance?

- If we stick with linked lists, how can we improve search?
 - Where do we want to find things?
 - What do thumb indexes do in a dictionary?
 - What about 256 different linked lists? `readset3.cpp`
Analysis: Algorithms and Data Structures

- We need a vocabulary to discuss performance and to reason about alternative algorithms and implementations
 - What’s the best way to sort, why?
 - What’s the best way to search, why?
 - Which is better, readset, readset2, readset3, readset4?

- We need both empirical tests and analytical/mathematical reasoning
 - Given two methods, which is better? Run them to check.
 - 30 seconds vs. 3 seconds, easy. 5 hours vs. 2 minutes, harder
 - Which is better? Analyze them.
 - Use mathematics to analyze the algorithm, the implementation is another matter
Multiplying and adding big-Oh

- Suppose we do a linear search then we do another one
 - What is the complexity?
 - If we do 100 linear searches?
 - If we do n searches on a vector of size n?

- What if we do binary search followed by linear search?
 - What are big-Oh complexities? Sum?
 - What about 50 binary searches? What about n searches?

- What is the number of elements in the list (1,2,2,3,3,3)?
 - What about (1,2,2, ..., n,n,...,n)?
 - How can we reason about this?
Helpful formulae

- **We always mean base 2 unless otherwise stated**
 - What is \(\log(1024) \)?
 - \(\log(xy) = \log(x) + \log(y) \)
 - \(\log(x^y) = y \log(x) \)
 - \(\log(2^n) = 2^{(\log n)} \)
 - \(n \log(2) = n \)
 - \(2^{(\log n)} = n \)

- **Sums (also, use sigma notation when possible)**
 - \(1 + 2 + 4 + 8 + \ldots + 2^k = 2^{k+1} - 1 = \sum_{i=0}^{k} 2^i \)
 - \(1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} = \sum_{i=1}^{n} i \)
 - \(a + ar + ar^2 + \ldots + ar^{n-1} = \frac{a(r^n - 1)}{(r-1)} = \sum_{i=0}^{n-1} ar^i \)
Different measures of complexity

- **Worst case**
 - Gives a good upper-bound on behavior
 - Never get worse than this
 - Drawbacks?

- **Average case**
 - What does average mean?
 - Averaged over all inputs? Assuming uniformly distributed random data?
 - Drawbacks?

- **Best case**
 - Linear search, useful?
Recurrences

- Counting nodes

```c
int length(Node * list)
{
    if (0 == list) return 0;
    else return 1 + length(list->next);
}
```

- What is complexity? justification?

- $T(n) = \text{time to compute length for an n-node list}$

 $$
 T(n) = T(n-1) + 1 \\
 T(0) = 1
 $$

- instead of 1, use $O(1)$ for constant time
 - independent of n, the measure of problem size
Solving recurrence relations

- **plug, simplify, reduce, guess, verify?**

 \[
 T(n) = T(n-1) + 1 \\
 T(0) = 1 \\
 T(n-1) = T(n-1-1) + 1 \\
 T(n) = [T(n-2) + 1] + 1 = T(n-2)+2 \\
 T(n-2) = T(n-2-1) + 1 \\
 T(n) = [(T(n-3) + 1) + 1] + 1 = T(n-3)+3 \\
 \\
 T(n) = T(n-k) + k \\
 \text{find the pattern!} \\
 \text{Now, let } k=1, \text{ then } T(n) = T(0)+n = 1+n \\
 \\
 \text{get to base case, solve the recurrence: } O(n)\]
Consider merge sort for linked lists

- Given a linked list, we want to sort it
 - Divide the list into two equal halves
 - Sort the halves
 - Merge the sorted halves together

- What’s complexity of dividing an n-node in half?
 - How do we do this?

- What’s complexity of merging (zipping) two sorted lists?
 - How do we do this?

- \(T(n) = \text{time to sort n-node list} = 2 \cdot T(n/2) + O(n) \)
 - why?
sidebar: solving recurrence

\[T(n) = 2T(n/2) + n \]
\[T(1) = 1 \]

\[T(n) = 2[2T(n/4) + n/2] + n \]
= \[4 T(n/4) + n + n \]
= \[4[2T(n/8) + n/4] + 2n \]
= \[8T(n/8) + 3n \]
= \[\ldots \text{ eureka!} \]
= \[2^k T(n/2^k) + kn \]

let \(2^k = n\)
\[k = \log n, \text{ this yields } 2^{\log n} T(n/2^{\log n}) + n(\log n) \]
\[n T(1) + n(\log n) \]
\[O(n \log n) \]
Complexity Practice

• What is complexity of Build? (what does it do?)

 Node * Build(int n)
 {
 if (0 == n) return 0;
 else
 {
 Node * first = new Node(n, Build(n-1));
 for(int k = 0; k < n-1; k++)
 {
 first = new Node(n,first);
 }
 return first;
 }
 }

• Write an expression for T(n) and for T(0), solve.
Recognizing Recurrences

- Solve once, re-use in new contexts
 - T must be explicitly identified
 - n must be some measure of size of input/parameter
 - T(n) is the time for quicksort to run on an n-element vector

\[
T(n) = T(n/2) + O(1) \quad \text{binary search} \quad O(\log n)
\]
\[
T(n) = T(n-1) + O(1) \quad \text{sequential search} \quad O(n)
\]
\[
T(n) = 2T(n/2) + O(1) \quad \text{tree traversal} \quad O(n)
\]
\[
T(n) = 2T(n/2) + O(n) \quad \text{quicksort} \quad O(n \log n)
\]
\[
T(n) = T(n-1) + O(n) \quad \text{selection sort} \quad O(n^2)
\]

- Remember the algorithm, re-derive complexity
Binary Trees

- Linked lists have efficient insertion and deletion, but inefficient search
 - Vector/array: search is efficient, insertion/deletion are not
- Binary trees are structures that yield efficient insertion, deletion, and search
 - Trees used in many contexts, not just for searching, e.g., expression trees
 - Search is as efficient as binary search in array, insertion/deletion as efficient as linked list (once node found)
 - Binary trees are inherently recursive, difficult to process trees non-recursively, but possible (recursion never required, but often makes coding/algorithms simpler)
From doubly-linked lists to binary trees

- Instead of using prev and next to point to a linear arrangement, use them to divide the universe in half
 - Similar to binary search, everything less goes left, everything greater goes right
- How do we search?
- How do we insert?
Basic tree definitions

- **Binary tree is a structure:**
 - empty
 - *root node with left and right subtrees*
- **terminology: parent, children, leaf node, internal node, depth, height, path**
 - link from node N to M then N is *parent* of M
 - M is *child* of N
 - *leaf* node has no children
 - internal node has 1 or 2 children
 - *path* is sequence of nodes, N₁, N₂, ..., Nₖ
 - Nᵢ is parent of Nᵢ₊₁
 - sometimes edge instead of node
 - *depth* (level) of node: length of root-to-node path
 - level of root is 1
 - *height* of node: length of longest node-to-leaf path
 - height of tree is height of root
Printing a search tree in order

- **When is root printed?**
 - After left subtree, before right subtree.

```cpp
void Visit(Node * t)
{
    if (t != 0)
    {
        Visit(t->left);
        cout << t->info << endl;
        Visit(t->right);
    }
}
```

- **Inorder traversal**
Insertion and Find? Complexity?

- How do we search for a value in a tree, starting at root?
 - Can do this both iteratively and recursively, contrast to printing which is very difficult to do iteratively
 - How is insertion similar to search?

- What is complexity of print? Of insertion?
 - Is there a worst case for trees?
 - Do we use best case? Worst case? Average case?

- How do we define worst and average cases
 - For trees? For vectors? For linked lists? For vectors of linked-lists?
From concept to code with binary trees

- Trees can have many shapes: short/bushy, long/stringy
 - if height is h, number of nodes is between h and $2^h - 1$
 - single node tree: height = 1, if height = 3

- C++ implementation, similar to doubly-linked list

```cpp
struct Tree
{
    string info;
    Tree * left;
    Tree * right;
    Tree(const string& s, Tree * lptr, Tree * rptr)
    : info(s), left(lptr), right(rptr)
    {
    }
};
```
Tree functions

- **Compute height of a tree, what is complexity?**

```c
int height(Tree * root)
{
    if (root == 0) return ;
    else {
        return 1 + max(height(root->left),
                        height(root->right) );
    }
}
```

- **Modify function to compute number of nodes in a tree, does complexity change?**
 - What about computing number of leaf nodes?
Tree traversals

- Different traversals useful in different contexts
 - Inorder prints search tree in order
 - Visit left-subtree, process root, visit right-subtree

 - Preorder useful for reading/writing trees
 - Process root, visit left-subtree, visit right-subtree

 - Postorder useful for destroying trees
 - Visit left-subtree, visit right-subtree, process root
Insertion into search tree

- **Simple recursive insertion into tree**

```cpp
void insert(Tree *& t, const string& s)
// pre: t is a search tree
// post: s inserted into t, t is a search tree
{
    if (t == 0)            t = new Tree(s,0,0);
    else if (s <= t->left) insert(t->left,s);
    else                   insert(t->right,s);
}
```

- **Note:** in each recursive call, the parameter t in the called clone is either the left or right pointer of some node in the original tree
 - Why is this important?
 - Why must t be passed by reference?
 - For alternatives see readset4.cpp
Balanced Trees and Complexity

- A tree is height-balanced if
 - Left and right subtrees are height-balanced
 - Left and right heights differ by at most one

```c
bool isBalanced(Tree * root)
{
    if (root == 0) return true;
    else
    {
        return
            isBalanced(root->left) &&
            isBalanced(root->right) &&
            abs(height(root->left) - height(root->right)) <= 1;
    }
}
```
What is complexity?

- Assume trees are “balanced” in analyzing complexity
 - Roughly half the nodes in each subtree
 - Leads to easier analysis

- How to develop recurrence relation?
 - What is $T(n)$?
 - What other work is done?

- How to solve recurrence relation
 - Plug, expand, plug, expand, find pattern
 - A real proof requires induction to verify that pattern is correct
class TreeSet
{
 public:
 TreeSet();
 bool contains(const string& word) const;
 void insert(const string& word);

 private:

 struct Node
 {
 string info;
 Node * left * right; // need constructor
 };
 Node * insertHelper(Node * root, const string& s);
 Node * myRoot;
};
void TreeSet::insert(const string& s)
{
 myRoot = insertHelper(myRoot);
}

TreeSet::Node *
TreeSet::insertHelper(Node * root, const string& s)
{
 // recursive insertion
}

- **Why is helper function necessary? Is it really necessary?**
 - Alternatives for other functions: print/contains, for example
 - What about const-ness for public/private functions?
 - What about TreeSet::Node syntax? Why?