Hashing

Review:

- Goal: map s items from size m universe to table of size n
- some items get mapped to same place: “collision”
- Problem: any function has bad set mapping m/n items to same bucket
- Solution: build family of functions, choose one that works well

Hash Families:

- Random function has good behavior, but hard to compute efficiently
- Goal: $O(1)$ access time
- So can only look at constant number of cells.
- Each holds value in range 1, . . . , m (log m bits)
- So, fixed number of cells can only distinguish poly(m) functions
- This bounds size of hash family we can choose from

Recall random function analysis:

- set S of s items
 - what is expected time for i access?
 - $C_{ij} = 1$ if i,j collide
 - Time to find i is $\sum_j C_{ij}$
 - expected value $(s - 1)/n \leq 1$ for $s \leq n$ (and optimal for s)

2-universal family:

- how much independence was used above? pairwise (search item versus each other item)
- so: OK if items land pairwise independent
- pick p in range $m, \ldots, 2m$ (not random)
- pick random a, b
- map x to $(ax + b \mod p) \mod n$
 - pairwise independent, uniform before mod m
 - So pairwise independent, near-uniform after mod m
- argument above holds: $O(1)$ expected search time.
• represent with two $O(\log m)$-bit integers: hash family of poly size.

• em max load?
 – expected load in a bin is 1
 – so $O(\sqrt{n})$ with prob. $1-1/n$ (chebyshev).
 – this bounds expected max-load
 – some item may have bad load, but unlikely to be the requested one

perfect hash families

• perfect hash function: no collisions

• for any S of $s \leq n$, perfect h in family

• eg, set of all functions

• but hash choice in table: $m^{O(1)}$ size family.

• exists iff $m = 2^{\Omega(n)}$ (probabilistic method) (hard computationally)
 – random function. $Pr(\text{perfect})= n!/n^n$
 – So take $n^n/n! \approx e^n$ functions. $Pr(\text{all bad})= 1/e$
 – Number of subsets: at most m^n
 – So take $e^n \cdot \ln m^n = ne^n \ln m$ functions. $Pr(\text{all bad}) \leq 1/m^n$
 – So with nonzero probability, no set has all bad functions (union)
 – number of functions: $ne^n \ln m = m^{O(1)}$ if $m = 2^{\Omega(n)}$

• Too bad: only fit sets of $\log m$ items

• also, hard computationally

Alternative try: use more space:

• How big can s be for random s to n without collisions?
 – Expected number of collisions is $E[\sum C_{ij}] = (\binom{s}{2})(1/n) \approx s^2/2n$
 – So $s = \sqrt{n}$ works with prob. $1/2$

• Is this best possible?
 – Birthday problem: $(1 - 1/n) \cdots (1 - s/n) \approx e^{-s^2/2n}$
 – So, when $s = \sqrt{n}$ has $\Omega(1)$ chance of collision
 – 23 for birthdays

Two level hashing solves problem
• Hash s items into $O(s)$ space
• Build quadratic size hash table on contents of each bucket
• bound $\sum b_k^2 = \sum_i [i \in b_k] = \sum C_i + C_{ij} = O(s)$
• expected $O(s)$.
• So try till get
• Then build collision-free quadratic tables inside
• Try till get
• Polynomial time in s, Las-vegas algorithm
• Easy: $6s$ cells
• Hard: $s + o(s)$ cells (bit fiddling)

Derandomization
• Probability 1/2 top-level function works
• Only m^2 top-level functions
• Try them all!
• Polynomial in m, deterministic algorithm

Treaps
Dictionaries for ordered sets
• New Operations.
 – enumerate in order
 – successor-of, predecessor-of (even if not in set)
 – join(S, k, T), split, paste(S, T)

Binary tree.
• child and parent pointers
• endogenous: leaf nodes empty.
• balanced if depth $O(\log n)$
• average case.
• worst case
Tree balancing

- rotations
- implementing operations.
- red/black, AVL
- splay trees.
 - drawbacks in geometry:
 - auxiliary structure on nodes in subtree
 - rebuild on rotation

Returning to average case:

- Assign random “arrival orders” to keys
- Build tree as if arrived in that order
- Average case applies
- No rotations on searches

Choosing priorities

- define arrival by random priorities
- assume continuous distribution, fix.
- eg, use 2 log n bits, w.h.p. no collisions

Treaps.

- tree has keys in heap order of priorities
- unique tree given priorities—follows from insertion order
- implement insert/delete etc.
- rotations to maintain heap property

Depth $d(x)$ analysis

- Tree is trace of a quicksort
- We proved $O(\log n)$ w.h.p.
- for x rank k, $E[d(x)] = H_k + H_{n-k+1} - 1$
- $S^- = \{y \in S \mid y \leq x\}$
- $Q_x =$ ancestors of x
• Show $E[Q_x^-] = H_k$.
• to show: $y \in Q_x^-$ iff inserted before all z, $y < z \leq x$.
• deduce: item j away has prob $1/j$. Add.
• Suppose $y \in Q_x^-$.
 – The inserted before x
 – Suppose some z between inserted before y
 – Then y in left subtree of z, x in right, so not ancestor
 – Thus, y before every z
• Suppose y first
 – then x follows y on all comparisons (no z splits
 – So ends up in subtree of y

Rotation analysis
• Insert/Delete time
 – define spines
 – equal left spine of right sub plus right spine of left sub
 – proof: when rotate up, on spine increments, other stays fixed.
• R_x length of right spine of left subtree
• $E[R_x] = 1 - 1/k$ if rank k
• To show: $y \in R_x$ iff
 – inserted after x
 – all z, $y < z < x$, arrive after y.
 – if z before y, then y goes left, so not on spine
• deduce: if r elts between, $r!$ of $(r + 2)!$ permutations work.
• So probability $1/r^2$.
• Expectation $\sum 1/(1 \cdot 2) + 1/(2 \cdot 3) + \cdots = 1 - 1/k$
• subtle: do analysis only on elements inserted in real-time before x, but now assume they arrive in random order in virtual priorities.