Date midterm.

Treaps

Review:
- Dictionaries for **ordered** sets
- Binary tree.
- Tree balancing by rotations
- drawbacks in geometry: rebuild on rotation

Returning to average case:
- Assign random “arrival orders” to keys
- Build tree **as if** arrived in that order
- Average case applies
- No rotations on searches

Choosing priorities
- define arrival by random priorities
- assume continuous distribution, fix.
- eg, use $2 \log n$ bits, w.h.p. no collisions

Treaps.
- tree has keys in heap order of priorities
- unique tree given priorities—follows from insertion order
- implement insert/delete etc.
- rotations to maintain heap property

Depth $d(x)$ analysis
- Tree is trace of a quicksort
- We proved $O(\log n)$ w.h.p.
- for x rank k, $E[d(x)] = H_k + H_{n-k+1} - 1$
- $S^- = \{y \in S \mid y \leq x\}$
- $Q_x = $ ancestors of x
• Show $E[Q^-_x] = H_k$.

• to show: $y \in Q^-_x$ iff inserted before all z, $y < z \leq x$.

• deduce: item j away has prob $1/j$. Add.

• Suppose $y \in Q^-_x$.
 – The inserted before x
 – Suppose some z between inserted before y
 – Then y in left subtree of z, x in right, so not ancestor
 – Thus, y before every z

• Suppose y first
 – then x follows y on all comparisons (no z splits
 – So ends up in subtree of y

Rotation analysis

• Insert/Delete time
 – define spines
 – equal left spine of right sub plus right spine of left sub
 – proof: when rotate up, on spine increments, other stays fixed.

• R_x length of right spine of left subtree

• $E[R_x] = 1 - 1/k$ if rank k

• To show: $y \in R_x$ iff
 – inserted after x
 – all z, $y < z < x$, arrive after y.
 – if z before y, then y goes left, so not on spine

• deduce: if r elts between, $r!$ of $(r + 2)!$ permutations work.

• So probability $1/r^2$.

• Expectation $\sum 1/(1 \cdot 2) + 1/(2 \cdot 3) + \cdots = 1 - 1/k$

• subtle: do analysis only on elements inserted in real-time before x, but now assume they arrive in random order in virtual priorities.
skip lists

- ruler intuition
- achieve with geometric variables
- backwards analysis of search path
- insert/delete time

Shortest Paths

classical shortest paths.

- dijkstra’s algorithm
- floyd’s algorithm. similarity to matrix multiplication

Matrices

- length 2 paths by squaring
- matrix multiplication. strassen.
- shortest paths by “funny multiplication.”
 - huge integer implementation
 - base-\((n + 1)\) integers

Boolean matrix multiplication

- easy.
- gives objects at distance 2.
- gives n-mul algorithm for problem
- what about recursive?
- well can get to within 2: let \(T_k\) be boolean “distance less than or equal to \(2^k\). Squaring gives \(T_{k+1}\).
- what about exact?

Seidel’s distance algorithm.

- log-size integers:
 - parities suffice:
 * square \(G\) to get adjacency \(A'\), distance \(D'\)
 - if \(D_{ij}\) even then \(D_{ij} = 2D'_{ij}\)
\[\text{if } D_{ij} \text{ odd then } D_{ij} = 2D'_{ij} - 1 \]

- For neighbors \(i, k \),
 * \(D_{ij} - 1 \leq D_{kj} \leq D_{ij} + 1 \)
 * exists \(k \), \(D_{kj} = D_{ij} - 1 \)

- Parities
 * If \(D_{ij} \) even, then \(D'_{kj} \geq D'_{ij} \) for every neighbor \(k \)
 * If \(D_{ij} \) odd, then \(D'_{kj} \leq D'_{ij} \) for every neighbor \(k \), and strict for at least one
- Add
 * \(D_{ij} \) even iff \(S_{ij} = \sum_k D'_{kj} \geq D_{ij}d(i) \)
 * \(D_{ij} \) odd iff \(\sum_k D'_{kj} < D_{ij}d(i) \)
 * How determine? find \(S = AD' \)

To find paths: Witness product.

- easy case: unique witness
 - multiply column \(c \) by \(c \).
 - read off witness identity

- reduction to easy case:
 - suppose \(r \) columns have witness, where \(2^k \leq r \leq 2^{k+1} \)
 - choose each column with probability \(2^{-k} \).
 - prob. exactly one witness: \(r \cdot 2^{-k}(1 - 2^{-k})^{r-1} \geq (1/2)(1/e^2) \)

Mod 3:

- Recall some neighbor distance down by one
- so compute distances mod 3.
- suppose \(D_{ij} = 1 \) mod 3
- then look for \(k \) neighbor of \(i \) such that \(D_{kj} = 0 \) mod 3
- let \(D^{(s)}_{ij} = 1 \) iff \(D_{ij} = s \) mod 3
- than \(AD^{(s)} \) has \(ij = 1 \) iff a neighbor \(k \) of \(i \) has \(D^{(s)}_{kj} \)
- so, witness matrix mul!