Midterm out tuesday.
Collaborations.

Shortest Paths
classical shortest paths.

- dijkstra’s algorithm
- floyd’s algorithm. similarity to matrix multiplication

Matrices

- length 2 paths by squaring
- matrix multiplication. strassen.
- shortest paths by “funny multiplication.”
 - huge integer implementation
 - base-$(n + 1)$ integers

Boolean matrix multiplication

- easy.
- gives objects at distance 2.
- gives $nMM(n)$ algorithm for problem
- what about recursive?
- well can get to within 2: let T_k be boolean “distance less than or equal to 2^k. Squaring gives T_{k+1}.
- $O(\log n)$ squares for unit length
- what about exact?

Seidel’s distance algorithm for unit lengths.

- log-size integers:
 - parities suffice:
 - square G to get adjacency A', distance D'
 - if D_{ij} even then $D_{ij} = 2D'_{ij}$
 - if D_{ij} odd then $D_{ij} = 2D'_{ij} - 1$
 - For neighbors i, k,
 - $D_{ij} - 1 \leq D_{kj} \leq D_{ij} + 1$
exists \(k, D_{kj} = D_{ij} - 1 \)

- Parities
 - If \(D_{ij} \) even, then \(D'_{kj} \geq D'_{ij} \) for every neighbor \(k \)
 - If \(D_{ij} \) odd, then \(D'_{kj} \leq D'_{ij} \) for every neighbor \(k \), and strict for at least one
- Add
 - \(D_{ij} \) even iff \(S_{ij} = \sum_k D'_{kj} \geq D_{ij} d(i) \)
 - \(D_{ij} \) odd iff \(\sum_k D'_{kj} < D_{ij} d(i) \)
 - How determine? find \(S = AD' \)

To find paths: Witness product.

- easy case: unique witness
 - multiply column \(c \) by \(c \).
 - read off witness identity
- reduction to easy case:
 - Suppose \(r \) columns have witness
 - Suppose choose each with prob. \(p \)
 - Prob. exactly 1 witness: \(rp(1 - p)^{r-1} \approx 1/e \)
 - Try all values of \(r \)
 - Wait, too many.
- Approx
 - Suppose \(p = 2/r \)
 - Then prob. exactly 1 is \(\approx 2/e^2 \)
 - So anything in range \(1/r \ldots 1/2r \) will do.
 - So try \(p \) all powers of 2.
 - suppose \(2^k \leq r \leq 2^{k+1} \)
 - choose each column with probability \(2^{-k} \).
 - prob. exactly one witness: \(r \cdot 2^{-k}(1 - 2^{-k})^{r-1} \geq (1/2)(1/e^2) \)
 - so try \(\log n \) distinct powers of 2, each \(O(\log n) \) times
- Mod 3:
 - Recall some neighbor distance down by one
 - so compute distances mod 3.
 - suppose \(D_{ij} = 1 \mod 3 \)
 - then look for \(k \) neighbor of \(i \) such that \(D_{kj} = 0 \mod 3 \)
 - let \(D_{ij}^{(s)} = 1 \iff D_{ij} = s \mod 3 \)
 - than \(AD^{(s)} \) has \(ij = 1 \) iff a neighbor \(k \) of \(i \) has \(D_{kj}^{(s)} \)
 - so, witness matrix mul!
Minimum Cut

- deterministic algorithms
- Min-cut implementation
- data structure for contractions
- alternative view—permutations.
- deterministic leaf algo
- recursion:

\[
\begin{align*}
p_{k+1} &= p_k - \frac{1}{4} p_k^2 \\
q_k &= \frac{4}{p_k} + 1 \\
q_{k+1} &= q_k + 1 + \frac{1}{q_k}
\end{align*}
\]

- cut counting
- Reliability
- Sampling