Polling

Outline

- Set has size u, contains n “special” elements
- goal: count number of special elements
- sample with probability $p = c(\log n)/\epsilon^2 n$
- with high probability, $(1 \pm \epsilon)np$ special elements
- if observe k elements, deduce $n \in (1 \pm \epsilon)k$.
- Problem: what is p?

Related idea: Monte Carlo simulation

- Probability space, event A
- easy to test for A
- goal: estimate $p = \Pr[A]$.
- Perform n trials (sampling with replacement).
 - expected outcome pn.
 - estimator $\frac{1}{n} \sum I_i$
 - prob outside $\epsilon < \exp(-\epsilon^2 np/3)$ ($\epsilon < 1$)
 - for prob. δ, need
 $n = O\left(\frac{\log 1/\delta}{\epsilon^2 p}\right)$
- what if p unknown?
- What if p is small?

Handling unknown p

- Sample n times till get $\mu_{\epsilon,\delta} = O(\log \delta^{-1}/\epsilon^2)$ hits
- w.h.p, $p \in (1 \pm \epsilon)\mu_{\epsilon,\delta} n$
Minimum Cut

Min-cut

- saw RCA, $\tilde{O}(n^2)$ time
- Another candidate: Gabow’s algorithm: $\tilde{O}(mc)$ time on m-edge graph with min-cut c
- nice algorithm, if m and c small. But how could we make that happen?
- Similarly, for those who know about it, augmenting paths gives $O(mv)$ for max flow. Good if m, v small. How make happen?
- Sampling! What’s a good sample? (take suggestions, think about them.
- Define $G(p)$—pick each edge with probability p

Intuition:

- G has m edges, min-cut c
- $G(p)$ has pm edges, min-cut pc
- So improve Gabow runtime by p^2 factor!

What goes wrong? (pause for discussion)

- expectation isn’t enough
- so what, use chernoff?
 - min-cut has c edges
 - expect to sample $\mu = pc$ of them
 - chernoff says prob. off by ϵ is at most $2e^{-\epsilon^2\mu/4}$
 - so set $pc = 8 \log n$ or so, deduce with high probability, no min-cut deviates.
- (pause for objections)
- yes, a problem: exponentially many cuts.
• so even though Chernoff gives “exponentially small” bound, accumulation of union bound means can’t bound probability of small deviation over all cuts.

Surprise! It works anyway.

• Theorem: if min cut c and build $G(p)$, then “min expected cut” is $\mu = pc$. Probability any cut deviates by more than ϵ is $O(n^2e^{-\epsilon^2\mu/3})$.

 - So, if get μ around $12(\log n)/\epsilon^2$, all cuts within ϵ of expectation with high probability.
 - Do so by setting $p = 12(\log n)/c$
 - Application: min-cut approximation.
 - Theorem says a min-cut will get value at most $(1 + \epsilon)\mu$ whp
 - Also says that any cut of original value $(1 + \epsilon)c/(1 - \epsilon)$ will get value at most $(1 + \epsilon)\mu$
 - So, sampled graph has min-cut at most $(1 + \epsilon)\mu$, and whatever cut is minimum has value at most $(1 + \epsilon)c/(1 - \epsilon) \approx (1 + 2\epsilon)c$ in original graph.
 - How find min-cut in sample? Gabow’s algorithm
 - in sample, min-cut $O((\log n)/\epsilon^2)$ whp, while number of edges is $O(m(\log n)/\epsilon^2c)$
 - So, Gabow runtime $\tilde{O}(m/\epsilon^2c)$
 - constant factor approx in near linear time.

Proof of Theorem

- Suppose min-cut c and build $G(p)$
- For midterm, you had to prove bound on number of α-minimum cuts.
- I assume you all did that
- well, maybe not, but proof will be in solutions
- So we take as given: number of cuts of value less than αc is at most $n^{2\alpha}$ (this is true, though probably slightly stronger than what you proved. If use $O(n^{2\alpha})$, get same result but messier.
− First consider n^2 smallest cuts. All have expectation at least μ, so prob any deviates is $e^{-\epsilon^2 \mu/4} = 1/n^2$ by choice of μ
− Write larger cut values in increasing order c_1, \ldots
− Then $c_{n^2} > \alpha c$
− write $k = n^{2 \alpha}$, means $\alpha_k = \log k / \log n^2$
− What prob c_k deviates? $e^{-\epsilon^2 pc_k/4} = e^{-\epsilon^2 \alpha_k \mu/4}$
− By choice of μ, this is k^{-2}
− sum over $k > n^2$, get $O(1/n)$

Transitive closure

Problem outline

• databases want size
• matrix multiply time
• compute reachibility set of each vertex, add

Sampling algorithm

• generate vertex samples until μ, δ reachable from v
• deduce size of v's reachibility set.
• reachability test: $O(m)$.
• number of sample: n/size.
• $O(mn)$ per vertex—ouch!

Pipeline for all vertices simultaneously

• increase mean to $O(\log n/\epsilon^2)$,
• so $1/n^2$ failure
• $O(mn)$ for all vertices (still ouch).

Avoid wasting work

• after $O(n \log n)$ samples, every vertex has log n hits. No more needed.
• Send at most log n samples over an edge: $\tilde{O}(m)$