Geometry

Model

- RAM
- operations on reals, including sqrts.
- (why OK)
- line segment intersections
- DISCRETE randomization

Applications:

- graphics of course
- any domain where few variables, many constraints

Point location in line arrangements

setup:

- \(n \) lines in plane
- gives \(O(n^2) \) convex regions
- goal: given point, find containing region.
- for convenience, use triangulated \(T(L) \)
- triangulation introduces \(O(n^2) \) segments (planar graph)
- assume all inside a bounding triangle

how about a binary space partition?

- single line splits input into two groups of \(n-1 \) rays
- search time (depth) could be \(n \)

A good algorithm:

- choose \(r \) random lines \(R \), triangulate
- inside each triangle, some lines.

- **good** if each triangle has only \(an(\log r)/r \) lines in it
- will show good with prob. \(1/2 \)
- recurse in each triangle—halves lines
Lookup method: $O(\log n)$ time.

Proof of good

- As with cut sampling, consider individual “problem” events, show unlikely

- Let Δ be all triplets of L-intersections

- when $\delta \in \Delta$ is bad:
 - let $I(\delta)$ be number of lines hitting δ
 - let $G(\delta)$ be lines that induce δ (at most 6)
 - for bad δ, must have all lines of $G(\delta)$ in R (call this $B_1(\delta)$), no lines of $I(\delta)$ in R (call this $B_2(\delta)$).

- bound prob. of bad δ:
 - we know
 $$\Pr[\delta] \leq \Pr[B_1(\delta)] \Pr[B_2(\delta) | B_1(\delta)]$$
 (why not equal?)
 - Given $B_1(\delta)$, still need $r - |G(\delta)| \geq r - 6 \geq r/2$ drawings (assuming $r > 12$)
 - prob. none picked is at most
 $$(1 - \frac{|I(\delta)|}{n})^{r/2} \leq e^{-r I(\delta)/2n}$$
 - Only care if $I(\delta) > an(\log r)/r$—large triplets
 - $\Pr[B_2(\delta) | B_1(\delta)] \leq r^{-a/2}$ for large triplet

- prob. some bad at most
 $$r^{-a/2} \sum_{\delta} \Pr[B_1(\delta)]$$

- sum is expected number of large triplets.
 - at most r^2 points in sample
 - at most $(r^2)^3 = r^6$ triplets in sample
 - expectation at most r^6
 - choose $a > 12$, deduce result.

Construction time:

- Recurrence
 $$T(n) \leq n^2 + cr^2 T(an \frac{\log r}{r}) = O(n^{2+\epsilon(r)})$$
 - ϵ decreasing with r
 - by choosing large r, arbitrarily close to $O(n^2)$
Randomized incremental construction

Special sampling idea:
- Sample all *except* one item
- hope final addition makes small or no change

Method:
- process items in order
- average case analysis
- randomize order to achieve average case
- e.g. binary tree for sorting

Randomized incremental sorting
- Less data structure than binary tree
- repeated insert of item into so-far-sorted
- each yet-uninserted item points to “destination interval” in current partition
- bidirectional pointers (interval points back to all contained items)
- when insert x to I,
 - splits interval I
 - must update all I-pointers to one of two new intervals
 - finding easy easy (since back pointers)
 - work proportional to size of I
- If analyze insertions, bigger intervals more likely to update; lots of quadratic terms.

Backwards analysis
- run algorithm backwards
- at each step, choose random element to un-insert
- find expected work
- works because:
 - condition on what first i objects are
 - which is i^{th} is random
 - discover didn’t actually matter what first i items are.
Apply analysis to Sorting:

- at step i, delete random of i sorted elements
- un-update pointers in adjacent intervals
- each pointer has $2/i$ chance of being un-updated
- expected work $O(n/i)$.
- true whichever are i elements.
- sum over i, get $O(n \log n)$
- compare to trouble analyzing insertion
 - large intervals more likely to get new insertion
 - for some prefixes, must do $n - i$ updates at step i.