Randomized incremental construction

Special sampling idea:

- Sample all except one item
- hope final addition makes small or no change

Method:

- process items in order
- average case analysis
- randomize order to achieve average case
- e.g. binary tree for sorting

Backwards analysis

- compute expected time to insert \(S_{i-1} \to S_i \)
- backwards: time to delete \(S_i \to S_{i-1} \)
- conditions on \(S_i \)
- but generally analysis doesn’t care what \(S_i \) is.

Convex Hulls

Define

- assume no 3 points on straight line.
- output:
 - points and edges on hull
 - in counterclockwise order
 - can leave out edges by hacking implementation

\(\Omega(n \log n) \) lower bound via sorting algorithm (RIC):

- random order \(p_i \)
- insert one at a time (to get \(S_i \))
- update \(\text{conv}(S_{i-1}) \to \text{conv}(S_i) \)
 - new point stretches convex hull
 - remove new non-hull points
revise hull structure

Data structure:

- point p_0 inside hull (how find?)
- for each p, edge of $conv(S_i)$ hit by p_0p
- say p cuts this edge
- To update p_i in $conv(S_{i-1})$:
 - if p_i inside, discard
 - delete new non hull vertices and edges
 - 2 vertices v_1, v_2 of $conv(S_{i-1})$ become p_i-neighbors
 - other vertices unchanged.
- To implement:
 - detect changes by moving out from edge cut by p_0p.
 - for each hull edge deleted, must update cut-pointers to $p_i\bar{v}_1$ or $p_i\bar{v}_2$

Runtime analysis

- deletion cost of edges:
 - charge to creation cost
 - 2 edges created per step
 - total work $O(n)$
- pointer update cost
 - proportional to number of pointers crossing a deleted cut edge
 - BACKWARDS analysis
 * run backwards
 * delete random point of S_i (not $conv(S_i)$) to get S_{i-1}
 * same number of pointers updated
 * expected number $O(n/i)$
 * what $Pr[update \ p]$?
 * $Pr[delete \ cut \ edge \ of \ p]$
 * $Pr[delete \ endpoint \ edge \ of \ p]$
 * $2/i$
 * deduce $O(n \log n)$ runtime
- Book studies 3d convex hull using same idea, time $O(n \log n)$, also gets voronoi diagram and Delauney triangulations.
Trapezoidal decomposition:

Motivation:
- manipulate/analyze a collection of *segments*
- e.g. detect segment intersections
- e.g., point location data structure
 - Draw verticals at all points
 - binary search for slab
 - binary search inside slab
 - problem: $O(n^2)$ space

Definition.
- draw altitudes from each intersection till hit a segment.
- trapezoid graph is *planar* (no crossing edges)
- each trapezoid is a *face*
- show a face.
- one face may have many vertices (from altitudes that hit the *outside* of the face)
- max vertex degree is 6 (assuming nondegeneracy)
- so total space $O(n + k)$ for k intersections.
- number of faces also $O(n + k)$ (each face needs one edge)
- (or use Euler’s theorem: $n_v - n_e + n_f \geq 2$)
- standard clockwise pointer representation lets you walk around a face

Randomized incremental construction:
- to insert segment, start at left endpoint
- draw altitudes from left end (splits a trapezoid)
- traverse segment to right endpoint, adding altitudes whenever intersect
- traverse again, erasing (half of) altitudes cut by segment

Implementation
- clockwise ordering of neighbors allows traversal of a face in time proportional to number of vertices
• for each face, keep a (bidirectional) pointer to all not-yet-inserted left-endpoints in face
• to insert line, start at face containing left endpoint
• traverse face to see where leave it
• create intersection,
 – update face (new altitude splits in half)
 – update left-end pointers
• segment cuts some altitudes: destroy half
 – removing altitude merges faces
 – update left-end pointers

Analysis:
• Overall, update left-end-pointers in faces neighboring new line
• time to insert \(s \) is
 \[
 \sum_{f \in F(s)} (n(f) + \ell(f))
 \]
 where
 – \(F(s) \) is faces \(s \) bounds after insertion
 – \(n(f) \) is number of vertices in face \(f \)
 – \(\ell(f) \) is number of left-ends in \(f \).
• So if \(S_i \) is first \(i \) segments inserted, expected work of insertion \(i \) is
 \[
 \frac{1}{i} \sum_{s \in S_i} \sum_{f \in F(s)} (n(f) + \ell(f))
 \]
• Note each \(f \) appears at most 4 times in sum
• so \(O(\frac{1}{i} \sum_j (n(f) + \ell(f))) \).
• Bound endpoint contribution:
 – note \(\sum l(f) = n - i \)
 – so contributes \(n/i \)
 – so total \(O(n \log n) \)
• Bound intersection contribution
 – \(\sum n(f) \) is \(O(k_i + i) \) if \(k_i \) intersections
– so cost is $E[k_i]$
– intersection present if both segments in first i insertions
– so expected cost is $O((i^2/n^2)k)$
– so cost contribution $(i/n^2)k$
– sum over i, get $O(k)$
– **note**: adding to RIC, assumption that first i items are random.

• Total: $O(n \log n + k)$