Trapezoidal decomposition:

Motivation:
- manipulate/analyze a collection of segments
- e.g. detect segment intersections
- e.g., point location data structure
 - Draw verticals at all points
 - binary search for slab
 - binary search inside slab
 - problem: $O(n^2)$ space

Definition.
- draw altitudes from each intersection till hit a segment.
- trapezoid graph is planar (no crossing edges)
- each trapezoid is a face
- show a face.
- one face may have many vertices (from altitudes that hit the outside of the face)
- max vertex degree is 6 (assuming nondegeneracy)
- so total space $O(n + k)$ for k intersections.
- number of faces also $O(n + k)$ (each face needs one edge)
- (or use Euler’s theorem: $n_v - n_e + n_f \geq 2$)
- standard clockwise pointer representation lets you walk around a face

Randomized incremental construction:
- to insert segment, start at left endpoint
- draw altitudes from left end (splits a trapezoid)
- traverse segment to right endpoint, adding altitudes whenever intersect
- traverse again, erasing (half of) altitudes cut by segment

Implementation
- clockwise ordering of neighbors allows traversal of a face in time proportional to number of vertices
• for each face, keep a (bidirectional) pointer to all not-yet-inserted left-endpoints in face
• to insert line, start at face containing left endpoint
• traverse face to see where leave it
• create intersection,
 – update face (new altitude splits in half)
 – update left-end pointers
• segment cuts some altititudes: destroy half
 – removing altitude merges faces
 – update left-end pointers

Analysis:
• Overall, update left-end-pointers in faces neighboring new line
• time to insert s is
 \[
 \sum_{f \in F(s)} (n(f) + \ell(f))
 \]
 where
 – $F(s)$ is faces s bounds after insertion
 – $n(f)$ is number of vertices in face f
 – $\ell(f)$ is number of left-ends in f.
• So if S_i is first i segments inserted, expected work of insertion i is
 \[
 \frac{1}{i} \sum_{s \in S_i} \sum_{f \in F(s)} (n(f) + \ell(f))
 \]
 • Note each f appears at most 4 times in sum
• so $O(\frac{1}{i} \sum_{f} (n(f) + \ell(f)))$.
• Bound endpoint contribution:
 – note $\sum \ell(f) = n - i$
 – so contributes n/i
 – so total $O(n \log n)$
• Bound intersection contribution
 – $\sum n(f)$ is $O(k_i + i)$ if k_i intersections
– so cost is $E[k_i]$
– intersection present if both segments in first i insertions
– so expected cost is $O((i^2/n^2)k)$
– so cost contribution $(i/n^2)k$
– sum over i, get $O(k)$
– **note**: adding to RIC, assumption that first i items are random.

- Total: $O(n \log n + k)$

Search structure

Goal: apply binary search in slabs, without n^2 space

- Idea: trapezoidal decomp is “important” part of vertical lines
- problem: slab search no longer well defined
- but we show ok

The structure:

- A kind of search tree
- “x nodes” test against an altitude
- “y nodes” test against a segment
- leaves are trapezoids
- each node has two children
- so works like a search tree
- bf But node may have many parents
- sharing descendants saves space.

Inserting an edge contained in a trapezoid

- update trapezoids
- build a 4-node subtree to replace leaf

Inserting an edge that crosses trapezoids

- sequence of traps Δ_i
- if Δ_0 has left endpoint, replace leaf with x-node for left endpoint and y-node for new segment
• Same for last Δ

• middle Δ:
 – cut off pieces form new trapezoids (leaves)
 – replace each cut trapezoid with a y-node for new segment
 – two children of y-node point to appropriate traps
 – note trap can have several incoming nodes

Proof of correctness:

• Claim after each insert, valid search for current segments

• consider last insertion

• search gets to correct place before insertion

• new nodes continue search to correct place

Search time analysis

• depth increases by one for new trapezoids “below” new segment

• RIC argument shows depth $O(\log n)$

Linear programming.

• define

• assumptions:
 – nonempty, bounded polyhedron
 – minimizing x_1
 – unique minimum, at a vertex
 – exactly d constraints per vertex

• definitions:
 – hyperplanes H
 – **basis** $B(H)$ of hyperplanes that define optimum
 – optimum value $O(H)$

• Simplex
 – exhaustive polytope search:
 – walks on vertices
 – runs in $O(n^{\lceil d/2 \rceil})$ time in theory
often great in practice

- polytime algorithms exist (ellipsoid)
- but bit-dependent (weakly polynomial)!
- OPEN: strongly polynomial LP
- goal today: polynomial algorithms for small d

Random sampling algorithm

- Goal: find $B(H)$
- Plan: random sample
 - solve random subproblem
 - keep only violating constraints V
 - recurse on leftover
- problem: violators may not contain all of $B(H)$
- bf BUT, contain some of $B(H)$
 - opt of sample better than opt of whole
 - but any point feasible for $B(H)$ no better than $O(H)$
 - so current opt not feasible for $B(H)$
 - so some $B(H)$ violated

- revised plan:
 - random sample
 - discard useless planes, add violators to “active set”
 - repeat sample on whole problem while keeping active set
 - claim: add one $B(H)$ per iteration

- Algorithm **SampLP**:
 - set S of “active” hyperplanes.
 - if $n < 9d^2$ do simplex $(d^{d/2+O(1)})$
 - pick $R \subseteq H - S$ of size $d\sqrt{n}$
 - $x \leftarrow \text{SampLP}(R \cup S)$
 - $V \leftarrow$ hyperplanes of H that violate x
 - if $V \leq 2\sqrt{n}$, add to S

- Runtime analysis:
– mean size of V at most \sqrt{n}
– each iteration adds to S with prob. $1/2$.
– each successful iteration adds a $B(H)$ to S
– deduce expect $2d$ iterations.
– $O(dn)$ per phase needed to check violating constraints: $O(d^2n)$ total
– recursion size at most $2d\sqrt{n}$

\[
T(n) \leq 2dT(2d\sqrt{n}) + O(d^2n \log n) + (\log n)^{O(\log d)}
\]
(Note valid use of linearity of expectation)

Must prove claim, that mean $V \leq \sqrt{n}$.

• Lemma:
 – suppose $|H - S| = m$.
 – sample R of size r from $H - S$
 – then expected violators $d(m - r - 1)/(r - d)$

• book broken: only works for empty S
• Let C_H be set of optima of subsets $T \cup S$, $T \subseteq H$
• Let C_R be set of optima of subsets $T \cup S$, $T \subseteq R$
• note $C_R \subseteq C_H$, and $O(R \cup S)$ is only point violating no constraints of R
• Let v_x be number of constraints in H violated by $x \in C_H$,
• Let i_x indicate $x = OPT(R \cup S)$

\[
E[|V|] = E[\sum v_x i_x] = \sum v_x Pr[i_x]
\]

• decide $Pr[v_x]$
 – $\binom{m}{r}$ equally likely subsets.
 – how many have optimum x?
 – let q_x be number of planes defining x not already in S
 – must choose q_x planes to define x
 – all others choices must avoid planes violating x. prob.

\[
\binom{m - v_x - q_x}{r - q_x} / \binom{m}{r} = \frac{(m - v_x - q_x) - (r - q_x) + 1}{r - q_x} \frac{(m - v_x - q_x)}{r - q_x - 1} / \binom{m}{r}
\]
\[
\leq \frac{(m - r + 1)}{r - d} \frac{(m - v_x - q_x)}{r - q_x - 1} / \binom{m}{r}
\]
- deduce

\[
E[V] \leq \frac{m - r + 1}{r - d} \sum v_x \left(\frac{m - v_x - q_x}{r - q_x - 1} \right) \binom{m}{r}
\]

- summand is prob that \(x \) is a point that violates exactly one constraint in \(r \).
 * must pick \(q_x \) constraints defining \(x \)
 * must pick \(r - q_x - 1 \) constraints from \(m - v_x - q_x \) nonviolators
 * must pick one of \(v_x \) violators
- therefore, sum is expected number of points that violate exactly one constraint in \(R \).
- but this is only \(d \) (one for each constraint in basis of \(R \))

Result:

- saw sampling LP that ran in time \(O((\log n)^{O(\log d)} + d^2 n \log n + d^{O(d)}) \)
- key idea: if pick \(r \) random hyperplanes and solve, expect only \(dm/r \) violating hyperplanes.

Iterative Reweighting

Get rid of recursion and highest order term.

- idea: be “softer” regarding mistakes
- plane in \(V \) gives “evidence” it’s in \(B(H) \)
- Algorithm:
 - give each plane weight one
 - pick \(9d^2 \) planes with prob. proportional to weights
 - find optimum of \(R \)
 - find violators of \(R \)
 - if

\[
\sum_{h \in V} w_h \leq (2 \sum_{h \in H} w_h)/(9d - 1)
\]

 then double violator weights
 - repeat till no violators
- Analysis
 - show weight of basis grows till rest is negligible.
 - claim \(O(d \log n) \) iterations suffice.
 - claim iter successful with prob. 1/2
- deduce runtime $O(d^2 n \log n) + d^{d/2+O^1} \log n$.
- proof of claim:
 * after each iter, double weight of some basis element
 * after kd iterations, basis weight at least d^{2k}
 * total weight increase at most $(1 + 2/(9d - 1))^k d \leq n \exp(2kd/(9d - 1))$
- after $d \log n$ iterations, done.

 - so runtime $O(d^2 n \log n) + d^{O(d)} \log n$
 - Can improve to linear in n

Randomized incremental algorithm

\[
T(n) \leq T(n-1, d) + \frac{d}{n} (O(dn) + T(n-1, d-1)) = O(d!n)
\]

Incomparable to prior bound.
Can improve to $O(d^{d2d} N)$ (see book)
Can improve to $O(d^2 n + b\sqrt{d \log d \log n})$