Admin
No bibles.
Homework. Start early. A few thursday questions.
Picking random item.

Complexity.
What is a rand. alg?
What is an alg?

• Turing Machines. RAM with large ints. log-cost RAM as TM.
• language as decision problem (vs optimization problems) “graphs with small min-cut.” algos accept/reject
• complexity class as set of languages
• P. polynomial time in input size
• NP as P with good advice string. witnesses
• polytime reductions. hardness, completeness.
Randomized algorithms have advice string, but it is random

• measure probs over space of advice strings
• equivalence to fliping unbiased random bits

ZPP (zero error probabilistic polytime)
• Polynomial expected time
• $A(x)$ accepts iff $x \in L$.
• Las Vegas algorithms

RP (randomized polytime) (MC with one-sided error).
• polytime (always)
• $x \not\in L \Rightarrow$ rejects (always).
• $x \in L \Rightarrow$ accepts with probability $> 1/2$.
• Monte Carlo algorithm
• one sided error
• precise numbers unimportant: amplification.
• min-cut example
• coRP.
• What if NOT worst case polytime? stop when passes time bound and accept.
• $ZPP = RP \cap coRP$

PP (probabilistic polytime) (two-sided MC)
• Worst case polytime (can force)
• $x \in L \Rightarrow$ accepts prob $> 1/2$
• $x \notin L \Rightarrow$ accepts prob $< 1/2$
• weakness: $NP \subseteq PP$

BPP (bounded probabilistic polytime)
• worst case polytime (can force)
• $x \in L \Rightarrow$ accepts prob $> 3/4$
• $x \notin L \Rightarrow$ accepts prob $< 1/4$
• precise numbers unimportant.

Clearly $P \subseteq RP \subseteq NP$. Open questions:
• $RP = coRP$? (equiv $RP = ZPP$)
• $BPP \subseteq NP$?

Tree evaluation.

Moving LOE through a (linear) recurrence.
• define. algo cost is number of leaves. $n = 2^h$

NOR model
deterministic model: must examine all leaves. time $2^h = 4^{h/2} = n$
• by induction: on any tree of height h, as questions are asked, can answer such that root is not determined until all leaves checked.
• Note: bad instance being constructed on the fly as algorithm runs.
• But, since algorithm deterministic, bad instance can be built in advance by simulating algorithm.

nondeterministic/checking
• $W(0) = L(0) = 1$
• winning position can guess move. $W(h) = L(h - 1)$
• losing must check both. $L(h) = 2W(h - 1)$
• follows $W(h) = 2 * W(h - 2) = 2^{h/2} = n^{1/2}$

randomized–guess which leaf wins.
• $T(0) = 1$
• $W(T)$ is a random variable
 – If T is winning time it takes to verify T is a win. Undefined if T is losing.
 – Ditto $L(T)$.
 – Expectation is over random choices of algorithm; NOT over trees.
 – Different trees have different expectations
• $W(h) = \max$ over all height-h winning trees of $E[W(T)]$
• $L(h) =$ same for losing trees.
• Consider any losing height-h tree
– both children are winning
– must eval both.
– each takes at most $W(h - 1)$ in expectation
– Thus (by linearity of expectation) we take at most $2W(h - 1)$
– Deduce $L(h) \leq 2W(h - 1)$.

• Consider any winning height-h tree

– Possibly both children are losing. If so, we stop after evaling the first child we pick. Total time $L(h - 1)$.
– If exactly one child losing, two cases:
 * if first choice is winning, eval it and stop: time at most $L(h - 1)$.
 * if first choice is losing, eval both children: $L(h - 1) + W(h - 1)$.
 * Conjecture: $W(h - 1) \leq L(h - 1)$
 * Then time $\leq 2L(h - 1)$.
– Each case 1/2 the time. Thus, expected time $\leq (3/2)L(h - 1)$.
– Deduce $W(h) \leq (3/2)L(h - 1) \leq (3/2)2W(h - 2) = 3W(h - 2)$
– So $W(h) \leq 3^{h/2} = n^{\log_3 4} = n^{0.793}$
– Go back and confirm assumption that $W(h) \leq L(h)$.