Coupling:

Method

- Run two copies of Markov chain X_t, Y_t
- Each considered in isolation is a copy of MC (that is, both have MC distribution)
- **but** they are not independent: they make dependent choices at each step
- in fact, after a while they are almost certainly the same
- Start Y_t in stationary distribution, X_t anywhere
- Coupling argument:

\[
\Pr[X_t = j] = \Pr[X_t = j \mid X_t = Y_t] \Pr[X_t = Y_t] + \Pr[X_t = j \mid X_t \neq Y_t] \Pr[X_t \neq Y_t] \\
= \Pr[Y_t = j] \Pr[X_t = Y_t] + \epsilon \Pr[X_t = j \mid X_t \neq Y_t]
\]

So just need to make ϵ (which is r.p.d.) small enough.

n-bit Hypercube walk: at each step, flip random bit to random value

- At step t, pick a random bit b, random value v
- both chains set but b to value v
- after $O(n \log n)$ steps, probably all bits matched.

Counting k colorings when $k > 2\Delta + 1$

- The reduction from (approximate) uniform generation
 - compute ratio of coloring of G to coloring of $G - e$
 - Recurse counting $G - e$ colorings
 - Base case k^n colorings of empty graph
- Bounding the ratio:
 - note $G - e$ colorings outnumber G colorings
 - By how much? Let L colorings in difference (u and v same color)
 - to make an L coloring a G coloring, change u to one of $k - \Delta = \Delta + 1$ legal colors
 - Each G-coloring arises at most one way from this
 - So each L coloring has at least $\Delta + 1$ neighbors unique to them
 - So L is $1/(\Delta + 1)$ fraction of G.
 - So can estimate ratio with few samples

- The chain:
• Pick random vertex, random color, try to recolor
• loops, so aperiodic
• Chain is time-reversible, so uniform distribution.

• Coupling:
 • choose random vertex \(v \) (same for both)
 • based on \(X_t \) and \(Y_t \), choose bijection of colors
 • choose random color \(c \)
 • apply \(c \) to \(v \) in \(X_t \) (if can), \(g(c) \) to \(v \) in \(Y_t \) (if can).
 • What bijection?
 * Let \(A \) be vertices that agree in color, \(D \) that disagree.
 * if \(v \in D \), let \(g \) be identity
 * if \(v \in A \), let \(N \) be neighbors of \(v \)
 * let \(C_X \) be colors that \(N \) has in \(X \) but not \(Y \) (\(X \) can’t use them at \(v \))
 * let \(C_Y \) similar, wlog larger than \(C_X \)
 * \(g \) should swap each \(C_X \) with some \(C_Y \), leave other colors fixed. Result: if \(X \) doesn’t change, \(Y \) doesn’t

• Convergence:
 • Let \(d'(v) \) be number of neighbors of \(v \) in opposite set, so
 \[
 \sum_{v\in A} d'(v) = \sum_{v\in D} d'(v) = m'
 \]
 • Let \(\delta = |D| \)
 • Note at each step, \(\delta \) changes by 0, \(\pm 1 \)
 • When does it increase?
 * \(v \) must be in \(A \), but move to \(D \)
 * happens if only one MC accepts new color
 * If \(c \) not in \(C_X \) or \(C_Y \), then \(g(c) = c \) and both change
 * If \(c \in C_X \), then \(g(c) \in C_Y \) so neither moves
 * So must have \(c \in C_Y \)
 * But \(|C_Y| \leq d'(v) \), so probability this happens is
 \[
 \sum_{v\in A} \frac{1}{n} \cdot \frac{d'(v)}{k} = \frac{m'}{kn}
 \]
 • When does it decrease?
 * must have \(v \in D \), only one moves
* sufficient that pick color not in either neighborhood of \(v \),
* total neighborhood size \(2\Delta \), but that counts the \(d'(v) \) elements of \(A \) twice.

so \(\text{Prob.} \sum_{v \in D} \frac{1}{n} \cdot \frac{k - (2\Delta - d'(v))}{k} = \frac{k - 2\Delta}{kn} \delta + \frac{m'}{kn} \)

- Deduce that expected change in \(\delta \) is difference of above, namely

\[-\frac{k - 2\Delta}{kn} \delta = -a\delta. \]

- So after \(t \) steps, \(E[\delta_t] \leq (1 - a)^t \delta_0 \leq (1 - a)^t n \).
- Thus, probability \(\delta > 0 \) at most \((1 - a)^t n \).
- But now note \(a > 1/n^2 \), so \(n^2 \log n \) steps reduce to one over polynomial chance.

Note: couple depends on state, but who cares

- From worm’s eye view, each chain is random walk
- so, all arguments hold

Counting vs. generating:

- we showed that by generating, can count
- by counting, can generate:

Parallel Algorithms

PRAM

- \(P \) processors, each with a RAM, local registers
- global memory of \(M \) locations
- each processor can in one step do a RAM op or read/write to one global memory location
- synchronous parallel steps
- various conflict resolutions (CREW, EREW, CRCW)
- not realistic, but explores “degree of parallelism”

Randomization in parallel:

- load balancing
- symmetry breaking
- isolating solutions
Classes:

- NC: poly processor, polylog steps
- RNC: with randomization. polylog runtime, monte carlo
- ZNC: las vegas NC
- immune to choice of conflict resolution

Practical observations:

- very little can be done in $o(\log n)$ with poly processors
- lots can be done in $\Theta(\log n)$
- often concerned about work which is processors times time
- algorithm is “optimal” if work equals best sequential

Basic operations

- and, or
- counting ones

Sorting

Quicksort in parallel:

- n processors
- each takes one item, compares to splitter
- count number of predecessors less than splitter
- determines location of item in split
- total time $O(\log n)$
- combine: $O(\log n)$ per layer with n processors
- problem: $\Omega(\log^2 n)$ time bound
- problem: $n \log^2 n$ work

Parallel recursion:

- paradigm: reduce problem size from n to \sqrt{n} in $O(\log n)$ time.
- total time $O(\log n + \log \sqrt{n} + \cdots) = O(\log n)$

More processors:
- n^2 processors
- do all comparisons
- count number of items smaller than me: $O(\log n)$
- put into place
- **result:** $O(\log n)$ time with n^2 processors
- or, $O(n)$ time with n processors

BoxSort:
- n processors
- Choose \sqrt{n} random splitters
- sort in $O(\log n)$ time
- insert items in splitters: $O(\log n)$ time
- solve each piece separately, recursively

Intuition:
- expected subproblem size $O(\sqrt{n})$
- so expected time spent on a branch is $O(\log n)$ as above
- problem: many branches: need high probability result.
- solution: analyze each path, show $O(\log n)$ time whp
- thus max path is $O(\log n)$

High probability:
- consider item x
- claim splitter within $\alpha \sqrt{n}$ on each side
- since prob. not at most $(1 - \alpha \sqrt{n}/n)^{\sqrt{n}} \leq e^{-\alpha}$
- fix $\gamma, d < 1/\gamma$
- define $\tau_k = d^k$
- define $\rho_k = n^{\gamma k}$
- note size ρ_k problem takes $\gamma^k \log n$ time
- argue at most d^k size-ρ_k problems whp
• deduce runtime $\sum d^k \gamma_k = \sum (d\gamma)^k \log n = O(\log n)$

• note: as problem shrinks, allowing more divergence in quantity for whp result

• minor detail: “whp” dies for small problems

• OK: if problem size $\log n$, finish in $\log n$ time with $\log n$ processors