Maximal independent set

trivial sequential algorithm

• inherently sequential
• from node point of view: each thinks can join MIS if others stay out
• randomization breaks this symmetry

Randomized idea

• each node joins with some probability
• all neighbors excluded
• many nodes join
• few phases needed

Algorithm:

• all degree 0 nodes join
• node v joins with probability $1/2d(v)$
• if edge (u, v) has both ends marked, unmark lower degree vertex
• put all marked nodes in IS
• delete all neighbors

Intuition: d-regular graph

• vertex vanishes if it or neighbor gets chosen
• mark with probability $1/2d$
• prob (no neighbor marked) is $(1 - 1/2d)^d$, constant
• so const prob. of neighbor of v marked—destroys v
• const fraction of neighbors vanish: $O(\log n)$ iters
• what about unmarking?
• prob(unmarking forced) only constant.
• So just changes constants

Implementing a phase trivial in $O(\log n)$.

Prob chosen for IS, given marked, exceeds $1/2$

• suppose w marked. only unmarked if higher degree neighbor marked
• higher degree neighbor marked with prob. \(\leq 1/2d(w) \)
• only \(d(w) \) neighbors
• prob. any marked at most 1/2.
• deduce prob. good vertex killed exceeds \((1 - e^{-1/6})/2\)

Good vertices
• good: at least 1/3 neighbors have lower degree
• prob. no neighbor of good marked \(\leq (1 - 1/2d(v))^{d(v)/3} \leq e^{-1/6} \).

Good edges
• any edge with a good neighbor
• has const prob. to vanish
• show half edges good
• deduce \(O(\log n) \) iterations.

Proof
• Let \(V_B \) be bad vertices; we count edges with both ends in \(V_B \).
• direct edges from lower to higher degree \(d_i \) is indegree, \(d_o \) outdegree
• if \(v \) bad, then \(d_i(v) \leq d(v)/3 \)
• deduce
\[
\sum_{v \in V_B} d_i(v) \leq \frac{1}{3} \sum_{v \in V_B} d(v) = \frac{1}{3} \sum_{v \in V_B} (d_i(v) + d_o(v))
\]
• so \(\sum_{v \in V_B} d_i(v) \leq \frac{1}{3} \sum_{v \in V_B} d_o(v) \)
• which means indegree can only “catch” half of outdegree; other half must go to good vertices.
• more carefully,
 - \(d_o(v) - d_i(v) \geq \frac{1}{3}(d(v)) = \frac{1}{3}(d_o(v) + d_i(v)). \)
 - Let \(V_G, V_B \) be good, bad vertices
 - degree of bad vertices is
\[
2e(V_B, V_B) + e(V_B, V_G) + e(V_G, V_B) = \sum_{v \in V_B} d_o(v) + d_i(v)
\]
\[
\leq 3 \sum (d_o(v) - d_i(v))
\]
\[
= 3(e(V_B, V_G) - e(V_G, V_B))
\]
\[
\leq 3(e(V_B, V_G) + e(V_G, V_B))
\]
Deduce \(e(V_B, V_B) \leq e(V_B, V_G) + e(V_G, V_B) \). result follows.
Derandomization:

- Analysis focuses on edges,
- so unsurprisingly, pairwise independence sufficient
- not immediately obvious, but again consider d-uniform case
- prob vertex marked $1/2d$
- neighbors $1,\ldots,d$ in increasing degree order
- Let E_i be event that i is marked.
- Let E'_i be E_i but no E_j for $j < i$
- A_i event no neighbor of i chosen
- Then prob eliminate v at least
 \[
 \sum \Pr[E'_i \cap A_i] = \sum \Pr[E'_i] \Pr[A_i | E'_i] \geq \sum \Pr[E'_i] \Pr[A_i]
 \]
- Wait: show $\Pr[A_i | E'_i] \geq \Pr[A_i]$
 - true if independent
 - measure $\Pr[\neg A_i | E'_i] \leq \sum \Pr[E_w | E'_i]$
 - measure
 \[
 \Pr[E_w | E'_i] = \frac{\Pr[E_w \cap E'_i]}{\Pr[E'_i]} = \frac{\Pr[E_w \cap \neg E_1 \cap \cdots | E_i]}{\Pr[\neg E_1 \cap \cdots | E_i]} \leq \frac{\Pr[E_w | E_j]}{1 - \sum \Pr[E_j | E_i]} = \Theta(\Pr[E_i])
 \]
- But expected marked neighbors $1/2$, so by Markov $\Pr[A_i] > 1/2$
- so prob eliminate v exceeds $\sum \Pr[E'_i] = \Pr[\cup E_i]$
- lower bound as $\sum \Pr[E_i] - \sum \Pr[E_i \cap E_j] = 1/2 - d(d - 1)/8d^2 > 1/4$
- so $1/2d$ prob. v marked but no neighbor marked, so v chosen
- Generate pairwise independent with $O(\log n)$ bits
- try all polynomial seeds in parallel
• one works

• gives deterministic NC algorithm

with care, $O(m)$ processors and $O(\log n)$ time (randomized)

LFMIS P-complete.

Perfect Matching

We focus on bipartite; book does general case.

Detecting one easy in NC:

• Tutte matrix

• Determinant nonzero iff PM

• Replace vars with values $1, \ldots, 2^m$, same holds

• Matrix Mul, Determinant in NC

• Wait: big numbers?

• Who cares: poly bits, NC to multiply etc

How about finding one?

• If unique, no problem

• Remove each edge, see if still PM in parallel

• multiplies processors by m

• still NC

• generalizes to polynomial number of matchings

Idea:

• make unique minimum weight perfect matching

• find it

Isolating lemma:

• Family of distinct sets over x_1, \ldots, x_m

• assign random weights in $1, \ldots, 2m$

• $\Pr(\text{unique min-weight set}) \geq 1/2$

• Odd: no dependence on number of sets!

• (of course $< 2^m$)
Proof:

- Fix item x_i
- Y is min-sets containing x_i
- N is min-sets no containing x_i
- true min-sets are either those in Y or in N
- how decide? Value of x_i
- For $x_i = -\infty$, min-sets are Y
- For $x_i = +\infty$, min-sets are N
- As increase from $-\infty$ to ∞, single transition value when both X and Y are min-weight
- If only Y min-weight, then x_i in every min-set
- If only X min-weight, then x_i in no min-set
- If both min-weight, x_i is ambiguous
- Suppose no x_i ambiguous. Then min-weight set unique!
- Exactly one value for x_i makes it ambiguous given remainder
- So $\text{pr}(\text{ambiguous}) = 1/2m$
- So $\text{pr}(\text{any ambiguous}) < m/2m = 1/2$

Usage:

- Consider tutte matrix A
- Assign random value 2^{w_i} to x_i, with $w_i \in 1, \ldots, 2m$
- Weight of matching is $2^{\Sigma w_i}$
- Let W be minimum sum
- Unique w/pr 1/2
- If so, determinant is odd multiple of 2^W
- Try removing edges one at a time
- Edge in PM iff new determinant$/2^W$ is odd.

NC algorithm open.
For exact matching, P algorithm open.
Upcoming

Vempala: “An Eye for Elegance”

- More markov chains
- convex volume estimation
- geometric embeddings
- 11-12:30

Joel Spencer

- 9:30-11
- Probabilistic method
- List of people who took it last time

Spielman advanced complexity
Next year: advanced algorithms.
Bring your research problems