Admin

Next tuesday: holiday.

• pset due thursday
• but material done TODAY (almost)
• so start/finish early, have fun on vacation
• New pset POSTED tuesday, distributed thursday

Method of Conditional Probabilities and Expectations

Derandomization.

• Theory: is P=RP?
• practice: avoid chance of error, chance of slow.

Conditional Expectation. Max-Cut

• Imagine placing one vertex at a time.
• $x_i = 0$ or 1 for left or right side
• $E[C] = (1/2)E[C|x_1 = 0] + (1/2)E[C|x_1 = 1]$
• Thus, either $E[C|x_1 = 0]$ or $E[C|x_1 = 1] \geq E[C]$
• Pick that one, continue
• More general, whole tree of element settings.
 - Let $C(a) = E[C | a]$.
 - For node a with children b, c, $C(b)$ or $C(c) \geq C(a)$.
• By induction, get to leaf with expected value at least $E[C]$
• But no randomness left, so that is actual cut value.
• Problem: how compute node values? Easy.

Conditional Probabilities. Set balancing. (works for wires too)

• Review set-balancing Chernoff bound
• Think of setting item at a time
• Let Q be bad event (unbalanced set)
• We know $\Pr[Q] < 1/n$.
• \(\Pr[Q] = \frac{1}{2} \Pr[Q \mid x_0] + \frac{1}{2} \Pr[Q \mid x_1] \)

• Follows that one of conditional probs. less than \(\Pr[Q] < \frac{1}{n} \).

• More general, whole tree of element settings.
 – Let \(P(a) = \Pr[Q \mid a] \).
 – For node \(a \) with children \(b, c \), \(P(b) \) or \(P(c) < P(a) \).
 – \(P(r) < 1 \) sufficient at root \(r \).
 – at leaf \(l \), \(P(l) = 0 \) or \(1 \).

• One big problem: need to compute these probabilities!

Pessimistic Estimators.

• Alternative to computing probabilities

• three necessary conditions:
 – \(\hat{P}(r) < 1 \)
 – \(\min\{\hat{P}(b), \hat{P}(c)\} < \hat{P}(a) \)
 – \(\hat{P} \) computable

 Imply can use \(\hat{P} \) instead of actual.

• Let \(Q_i = \Pr[\text{unbalanced set } i] \)

• Let \(\hat{P}(a) = \sum \Pr[Q_b \mid a] \) at tree node \(a \)

• Claim 3 conditions.
 – HW

• Result: deterministic \(O(\sqrt{n \ln n}) \) bias.

• more sophisticated pessimistic estimator for wiring.

Oblivious routing

• recall: choose random routing. Only \(\frac{1}{N} \) chance of failure

• Choose \(N^3 \) random routines.

• whp, for every permutation, at most \(2N^2 \) bad routes.

• given the \(N^3 \) routes, pick one at random.

• so for any permutation, prob \(\frac{2}{N} \) of being bad.
Fingerprinting

Basic idea: compare two things from a big universe U

- generally takes $\log U$, could be huge.
- Better: randomly map U to smaller V, compare elements of V.
- Probability(same) = $1/|V|$
- intuition: $\log V$ bits to compare, error prob. $1/|V|$

We work with fields

- add, subtract, mult, divide
- 0 and 1 elements
- eg reals, rats, (not ints)
- talk about \mathbb{Z}_p
- which field often won’t matter.

Verifying matrix multiplications:

- Claim $AB = C$
- check by mul: n^3, or $n^{2.376}$ with deep math
- Freivald’s $O(n^2)$.
- Good to apply at end of complex algorithm (check answer)

Freivald’s technique:

- choose random $r \in \{0, 1\}^n$
- check $ABr = Cr$
- time $O(n^2)$
- if $AB = C$, fine.
- What if $AB \neq C$?
 - trouble if $(AB - C)r = 0$ but $D = AB - C \neq 0$
 - find some nonzero row (d_1, \ldots, d_n)
 - wlog $d_1 \neq 0$
 - trouble if $\sum d_ir_i = 0$
 - ie $r_1 = (\sum_{i>1} d_i r_i)/d_1$
– principle of deferred decisions: choose all \(i \geq 2 \) first
– then have exactly one error value for \(r_1 \)
– prob. pick it is at most \(1/2 \)

How improve detection prob?
– \(k \) trials makes \(1/2^k \) failure.
– Or choosing \(r \in [1, s] \) makes \(1/s \).

• Doesn’t just do matrix mul.
 – check any matrix identity claim
 – useful when matrices are “implicit” (e.g. \(AB \))

• We are mapping matrices (\(n^2 \) entries) to vectors (\(n \) entries).

String matching

Checksums:

• Alice and Bob have bit strings of length \(n \)
• Think of \(n \) bit integers \(a, b \)
• take a prime number \(p \), compare \(a \bmod p \) and \(b \bmod p \) with \(\log p \) bits.

• trouble if \(a = b \pmod{p} \). How avoid? How likely?
 – \(c = a - b \) is \(n \)-bit integer.
 – so at most \(n \) prime factors.
 – How many prime factors less than \(k \)? \(\Theta(k/\ln k) \)
 – so take \(2n^2\log n \) limit
 – number of primes about \(n^2 \)
 – So on random one, \(1/n \) error prob.
 – \(O(\log n) \) bits to send.
 – implement by add/sub, no mul or div!

How find prime?

– Well, a randomly chosen number is prime with prob. \(1/\ln n \),
 – so just try a few.
 – How know its prime? Simple randomized test (later)

Pattern matching in strings
• m-bit pattern
• n-bit string
• work mod prime p of size at most t
• prob. error at particular point most $m/(t/\log t)$
• so pick big t, union bound
• implement by add/sub, no mul or div!