Main Goal of Lecture:

Develop techniques for testing equality of Expressions

\[\text{test } \varepsilon_1 = \varepsilon_2? \]

by using test

\[\text{hash } (\varepsilon_1) = \text{hash } (\varepsilon_2)? \]

Goals:

1. provable bounds on error probability
2. applicable to largest possible class of expressions

ALG 4.3

Hashing Polynomials and Algebraic Expressions:

(a) Identity Testing of Polynomials
(b) Applications of Polynomial Hashing
(c) Hashing Classes of Algebraic Expressions

Reading Selection:

Definitions:

polynomial expression:
1 or any variable, or integer, or
\(\alpha + \beta, \alpha - \beta, \alpha \cdot \beta, \) or \(\alpha \uparrow \kappa,\) where

\(\alpha, \beta\) are polynomial expressions, and \(\kappa\) is a positive integer.

Straight Line Program \(\Pi: \text{Input } x_1, \ldots, x_n\)

sequence assignments--

\[
\begin{align*}
\text{length} (\theta) & \begin{cases}
 x_{n+1} & \leftarrow x_{i_1} \theta_1 x_{j_1} \\
 x_{n+2} & \leftarrow x_{i_2} \theta_2 x_{j_2} \\
 \vdots
\end{cases}
\end{align*}
\]

output \(x_L\) where \(L = \text{length} (\Pi)\).

allow operations \(\theta_\kappa \in \{+, -, \cdot, \uparrow\}\)

\(\Pi(x_1, \ldots, x_n)\) denotes output value.
(1) Given a polynomial expression α, can construct a straight-line program of size linear in input polynomial α.

(2) A straight-line program $\Pi(x_1, \ldots, x_n)$ will yield a polynomial expression α_{Π} with integer coefficients where $\deg(\alpha_{\Pi}) \leq 2^{\text{length}(\Pi)}$.

If $\Pi(x_1, \ldots, x_n)$ is a program over \mathbb{Q}, $|\Pi(x_1, \ldots, x_n)| \leq 2^{2\text{length}(\Pi)}$ can be proved by induction on length (Π).

basis: true for case length $(\Pi) = 0$.

induction step: if true for length $(\Pi) \leq k - 1$ and $\Pi(x_1, \ldots, x_k) = \Pi_1(x_1 \ldots x_k)\theta_k \Pi_2(x_1 \ldots x_k)$, then $|\Pi(x_1 \ldots x_k)| \leq 2^{2\text{length}(\Pi)}$.

Q.E.D.
Let Q be an infinite field.
Let $P(x_1,\ldots,x_n)$ be nonzero polynomial degree d.

Lemma If $A \subseteq Q$ size $|A| > d$, then there exists at least $|\kappa - d|^n$ elements $a \in A^n$ such that $P(a) \neq 0$.

Proof: By induction on n

Basis: If $n = 1$, then P has at most d roots in Q.

Induction: Suppose lemma holds for polynomials with less than n variables. Since P nonzero, there exists at least $|\kappa - d|^{n-1}$ such that $P(a_1,\ldots,a_{n-1},c) \neq 0$. So by induction hypothesis there exists at least $(\kappa - d)^{n-1}$ such that $P(a_1,\ldots,a_{n-1}) \in A^{n-1}$ s.t. $P(a_1,\ldots,a_{n-1},c) \neq 0$. But the $P(x_n) = P(a_1,\ldots,a_{n-1},x_n)$ is nonzero polynomial with at least $\kappa - d$ elements in A s.t. $P(x_n) \neq 0$. Lemma follows: $Q.E.D.$
This is the key Lemma used to justify hashing polynomials!

If \(P(x_1...x_n) \) degree \(d \) in \(Q \),

Theorem: If \(\kappa = |A| \geq 2dn \), and \(\alpha \) is a random element of \(A^n \), then

\[
\Pr(P(\alpha) \neq 0) \geq \frac{1}{2}
\]

Proof:

\[
\Pr(P(\alpha) \neq 0) = \frac{|\{ \alpha : \alpha \in A^n, P(\alpha) \neq 0 \}|}{|A^n|}
\]

\[
= \frac{(\kappa - d)^n}{\kappa^n} \text{ by Lemma}
\]

\[
= (1 - \frac{d}{\kappa})^n
\]

\[
\geq (1 - \frac{1}{2n})^n \text{ since } \kappa \geq 2dn
\]

\[
\geq \left[(1 - \frac{1}{2n})^{2n} \right]^{\frac{1}{2}}
\]

\[
\geq e^{-\frac{1}{2}} \text{ since } (1 - \frac{1}{2n})^{2n} \geq e^{-1}
\]

\[
\geq \frac{1}{2} \text{ since } 2 \geq e^{\frac{1}{2}}
\]

Q.E.D.

Lemma 2:

If \(\kappa \) is an integer s.t. \(1 \leq \kappa \leq 2^{2n} \)
and \(m \) is randomly chosen from \(\{1, \ldots, 2^n\} \),
then \(\Pr(\kappa \neq 0 \mod m) \geq \frac{1}{4n} \) for \(n >> 0 \).

Proof:

By the prime number theorem, the number of primes less than \(2^{2n} \)
is at least \(\frac{2^{2n}}{2n} \) for large \(n \).

But \(\kappa \) has at most \(2n2^n \) prime divisors.

Hence, \(\Pr(\kappa \neq 0 \mod m) \)

\[
(\# \text{ primes } \leq 2^{2n} \text{ which don't divide } \kappa)
\]

\[
\geq \frac{2^{2n}}{2n - 2n2^n} \geq \frac{2^{2n}}{2^{2n}} \geq \frac{1}{4n} \text{ Q.E.D.}
\]
Algorithm: Randomized Zero Testing

Input: program \(\pi(x_1, \ldots, x_t) \) length \(r \)

begin
\(n = r + t \)
\(A = \{1, 2, \ldots, 2t2^r\} \)
for \(i = 1, \ldots, 8n \), do
 begin
 choose random \(\bar{a} \in A^t \)
 choose random \(m \in \{1, \ldots, 2^{2n}\} \)
 if \(\pi(\bar{a}) \neq 0 \mod m \),
 then return "\(\pi \neq 0 \)"
 end
return "\(\pi = 0 \)"
end

Theorem: \(\text{Prob}(\text{correct output}) \geq \frac{1}{2} \)

Proof: If \(\pi = 0 \), then algorithm always correct.

Suppose \(\pi \neq 0 \). By Lemma 1,

\(\text{Prob}(\pi(\bar{a}) \neq 0) \geq \frac{1}{2} \). Also, if \(\pi(\bar{a}) \neq 0 \), then

\(\text{Prob}(\pi(\bar{a}) \neq 0 \mod m) \geq \frac{1}{4n} \), so

\(\text{Prob}(\pi(\bar{a}) \neq 0 \mod m) \geq \frac{1}{2} \cdot \left(\frac{1}{4n}\right) = \frac{1}{8n} \). Hence,

\(\text{Prob}(\text{correct output}) \geq 1 - \left(1 - \frac{1}{8n}\right)^{8n} \)

\(\geq 1 - e^{-1} \)

\(\geq \frac{1}{2} \quad Q.E.D. \)
Applications of Polynomial Zero Testing

(1) Given $n \times n$ matrices A, B, C
problem: $A \cdot B = C$?

(2) Given n degree Polynomials $P_1(x), P_2(x), P_3(x)$
problem: $P_1(x) \cdot P_2(x) = P_3(x)$?

(3) Given n bit integers x_1, x_2, x_3
problem: $x_1 \cdot x_2 = x_3$?

(4) Given $n \times n$ Matrix A, integer r
problem: $\text{rank}(A) = r$?

(5) Given graph G of n vertices
problem: does G have perfect matching?

(6) Authentication systems

(7) Testing equality of sets with element addition and deletion operations

Given:

non integer matrices A, B, C

Theorem:

Can test $A \cdot B = C$?
in time $O(n^2 \log n)$
with success probability $\geq 1 - \frac{1}{n^c}$,
for a constant c.
Proof:

Let \(K = c \log n \).
Choose \(k \) random vectors \(\bar{x}_1, \ldots, \bar{x}_k \)
each of size \(n \), from elements in \(\{-1, 1\} \)

If \(\exists i \in \{1, \ldots, k\} \ s.t. \ A(B \bar{x}_i) \neq (C \bar{x}_i) \)
then output "\(A \cdot B \neq C \)"
else output "\(A \cdot B = C \)"

Note: if \(A \cdot B = C \), then no errors ever!

Given Polynomials: \(P_1(x) \cdot P_2(x), P_3(x)\) degree \(n \).

Theorem: Can test \(P_1(x) \cdot P_2(x) = P_3(x)\) in
expected \(0(n) \) arithmetic steps.

Proof: Fix error prob. \(\varepsilon \in \left(0, \frac{1}{2}\right)\).

Let
\[
\begin{align*}
 k &= \left\lceil \frac{1}{\varepsilon} \right\rceil, \\
 w &= 2^\left\lfloor \log(kn) \right\rfloor
\end{align*}
\]

Choose random \(x_0 \in \{-w+1, -w+2, \ldots, 0, \ldots, w-1, w\} \)

if \(P_1(x_0) \cdot P_2(x_0) - P_3(x_0) \neq 0 \)
then return "\(P_1(x) \cdot P_2(x) \neq P_3(x) \)"
else "\(P_1(x) \cdot P_2(x) = P_3(x) \)"

Note: If \(P_1 \cdot P_2 = P_3 \), then never any error!
If \(P_1 \cdot P_2 \neq P_3 \), then, since the polynomial
\(Q \equiv P_1 \cdot P_2 - P_3 \) has degree \(\leq 2n \),

\[
\Rightarrow \text{error probability} \leq \frac{2n}{2w} = \frac{n}{w} \leq \varepsilon \quad Q.E.D.
\]
Application to Perfect Matching

Let $G = (V, E)$ be an undirected graph with vertex set $V = \{1, \ldots, n\}$.

A perfect matching of G is a set of n edges on E with no common endpoints.

Define $n \times m$ matrix M such

$$M = \begin{cases} x_{ij} & \text{if } (i, j) \in E \\ 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

Let $x_{ij} = -x_{ji}$ be indeterminate variables.

Lemma (Edmonds): G has perfect matching iff determinate $(M) \neq 0$.

⇒ Randomized Algorithm for matching test:

[1] Choose each x_{ij} to be a random integer in $\{1, \ldots, n^c\}$

[2] If determinate $(M) = 0$

then return, "no perfect matching",
else, return, "a perfect matching exists".

Can set $c > \alpha 3$ to get error $< \frac{1}{n^\alpha}$.
Strongly Universal Hash Functions
(Wegman and Carter)

Let H be a set of hash fns $A \to B$

Def: H is strongly universaln if

$$\forall a_1 \ldots a_n \in A \quad \forall b_1 \ldots b_n \in B$$

then $\frac{|H|}{|B|^n}$ functions in H take $a_i \to b_i$

for $i = 1, \ldots, n$.

Example: Let A, B be sets in some finite field.

Let H = class of polynomials degree n of one variable.

Claim: H is strongly universaln.

Proof: Given $a_1, \ldots, a_n, b_1, \ldots, b_n$

\exists exactly one polynomial degree n

that interpolates through distinguished pairs

$a_i \to b_i$ for all $i = 1, \ldots, n$.

$Q.E.D.$
Applications of Polynomial Hashing to Authentication System:

Let $M =$ possible message set
$T =$ authentication tags

1. public knows set functions H from $M \rightarrow T$
2. sender / receiver share secret random $f \in H$
3. sender sends message m in M with authentication tag $f(m)$

case: $H =$ strongly universal$_2$ set fns $M \rightarrow T$

$=$ polynomials degree $< |M|$

Claim: unbreakable with prob $\geq 1 - \frac{1}{|T|}$

Proof: If f random fn in H forger must pick correct
fn f from $H' = \{ h \in G | f(m) = h(m) \}$ and substitute
m' for ms.t. $f(m') = f(m)$, but, by definition of
strongly universal$_2$ fns, only $\frac{1}{|T|}$ of fns in H' map
m' to $f(m)$. Q.E.D.

Application to Testing Set Equality

Given: set elements $A = \{a_1, \ldots, a_n\}$ and
sets S_1, \ldots, S_m initially empty

Operations:
1. add element a_i to set S_j
2. delete element a_i from set S_j
3. test equality $S_{j_1} = S_{j_2}$?

Implementation:
Use set hash fn H, which is strongly
universal$_n$ for each n.
Each $f \in H$ maps from A to B.
assume: B is group with operation \oplus and inverse

Example: Analyze following implementation
(Use variables V_1, \ldots, V_m initially all fixed $b_0 \in B$.)

Operations:
$S_j \leftarrow S_j \cup \{a_i\}$
$S_j \leftarrow S_j - \{a_i\}$

Implementation:
$V_j \leftarrow V_j \oplus f(a_i)$
$V_j \leftarrow V_j \oplus f(a_i)^{-1}$

test $S_{j_1} = S_{j_2}$?

$\text{test } V_{i_1} = V_{i_2}$?
Hashing Algebraic Expressions

(Gonnet, "Determining Equilibrium of Expressions in Random Polynomial Time", 1984 STOC)

Generalizations:
(1) complex arithmetic expressions

Partial Results:
(2) expressions with roots & rational components
(3) expressions with exponents
(4) expressions with trigonometric fnls

Hashing Complex Expressions

Assume \(p \) prime > 2

Lemma: \(\exists i \) s.t. \(i^2 = -1 \mod p \), iff \(p = 4k + 1 \) for some \(k \).

Proof: Since any prime \(p > 2 \) is odd so \(\frac{p-1}{2} \) is integer.

Let \(\alpha \) be generator of mult. group of \(Z_p \).
Then \(\alpha^{p-1} \equiv 1 \mod p \) and \(\alpha^{\frac{p-1}{2}} \equiv -1 \mod p \).
Thus \(i^2 \equiv \alpha^{\frac{p-1}{2}} \equiv -1 \mod p \) if \(i = \alpha^k \) where \(k = \frac{p-1}{4} \). \(\Box \)

Example: For \(p = 13 \), \(i^2 = -1 \mod p \) for \(i = 5 \).

Then: Can do equivalence testing of complex expressions in random polynomial time.
Hashing Expressions with Constant Exponents in Finite Fields

Expressions:

\[E^E \] allow \(E \) to have \(+, -, \times, +\) operations.
(Compute \(E \mod p \).)
requires \(E' \) only to have \(+, -\) operations.
(Compute \(E' \mod p-1 \).)
Since multiplication group in \(\mathbb{Z}_p \) is a cyclic group with one less element than entire group \(\mathbb{Z}_p \).

Hashing Expressions with Square Roots

Proposition:

If \(p = 4nj + 1 \) is prime > 2,
then \(\sqrt{j} \mod p \) is defined.

Hashing Expressions with Trigonometric Functions

(no provable method)

Extensions: (Morton)
Can extend construction to find \(e, \pi \) s.t. \(e^{i\pi} = -1 \) for certain primes \(p \).

Open Problem:
⇒ get a provable method for identity testing of trigonometric functions \(\sin(x), \cos(x) \), etc.

Idea:
Use equivalences
\[
\sin(x) = \frac{e^{ix} - e^{-ix}}{2i} \\
\cos(x) = \frac{e^{ix} + e^{-ix}}{2}
\]