Discovering Typical Structures of Documents: A Road Map Approach

Ke Wang
Department of Information Systems and Computer Science
National University of Singapore
www.iscs.nus.edu.sg/~wangk

Huiqing Liu
BioInformatics Center
National University of Singapore
www.bic.nus.edu.sg

Abstract The structure of a document refers to the role and hierarchy of subdocument references. Many online documents are similarly structured, though not identically structured. We study the problem of discovering “typical” structures of a collection of such documents, where the user specifies the minimum frequency of a typical structure. We will consider structural features of subdocument references such as labeling, nesting, ordering, cyclicity, and wildcard references, like those found on the Web and digital libraries. Typical structures can be used to serve the following purposes. (a) The “table-of-content” for gaining the general information of a source. (b) A road map for browsing and querying a source. (c) A basis for clustering documents. (d) Partial schemas for building structured layers to provide standard database access methods. (e) User/customer’s interests and browsing patterns. We present a solution to the discovery problem.

1 Introduction

1.1 Motivation

Many on-line documents, such as HTML, LaTeX, Bib-Tex, SGML files and those found in digital libraries, are semistructured. Semistructured data arises when the source does not impose a rigid structure (such as the Web) and when data are combined from several heterogeneous sources. See [11] for some recent work on semistructured data. Unlike unstructured raw data (such as image and sound), semistructured documents do have some structures. Figure 1 shows a segment of the semistructured document about the soccer league, modified from [7]. Each circle plus the text inside represents a subdocument (e.g., a HTML file) and its identifier (e.g., URI). The arrows and their labels, identifiable by special tags or a grammar, represent subdocument references and roles. In this paper, the term structure refers to the role (in the form of labels) and hierarchical relationships of subdocument references. The structure of a document gives a sense of what sort of questions might be answered by a more intensive examination of the document and how the information is represented.

For example, the structure of a person document could tell that the person has labeled fields Name, Address, Hobby, and Friend and that the Address subdocument has labeled fields Street and Zipcode. Knowing this information can help the user to decide whether a source contains the sort of information he/she wants, such as the personal information in this case.

Unlike structured data (such as relational or object-oriented databases), semistructured documents have no absolute schema or class fixed in advance, and each document contains its own schema or structure. For example, some clubs have more players than others; some fields are missing for some clubs; some players have birth day recorded and some do not; some have nicknames and some do not; etc. This structural irregularity, however, does not imply that there is no structural similarity among documents. On the contrary, it is quite common for documents describing the same type of information to have similar structures. For example, every club document has Name label and at least 10 Player labels; every player document has Name label; 50% player documents have Nationality label, etc. Other sources of documents having similar structures are documents about universities, movies, countries, census data, branch information within an organization, etc.

1.2 Main results

We consider the following discovery problem: given a collection of documents, find all “typical” structures that occur in a minimum number of documents specified by the user. We formally define this problem in Section 2. It is worth mentioning that though we use the term structure, it is up to the user to specify what is the structure of a document. For example, if the user wants to find frequent co-occurrences of keywords in several free-running text documents (thus, no structure at all in an usual sense), he/she just needs to specify all keywords as labels. In this case, a typical structure is a set of keywords that co-occur in some minimum number of free-running text documents. In this view, our framework generalizes the classical association rule problem motivated in the supermarket environment [2] where the core problem is finding typical subsets of (supermarket) items that are contained in some minimum number of (supermarket) transactions.

1.3 Application

Depending on applications, discovering typical structures can be performed either off-line where discovered structures are saved for future retrievals, or on-line where the discovery is done for a specific request. Each typical structure is associated with identifiers (e.g., URL) of documents that contain the structure, so that relevant documents can be retrieved and examined easily. The
following list gives a taste of applications of the discovery problem.

- **Road maps for querying/browsing a data source.** One limitation of querying and browsing semistructured documents, such as those found on the Web or digital libraries, is the disorientation resulting in the infamous “lost-in-hyperspace” syndrome, due to the lack of external schema information. To formulate any meaningful query, say in WebSQL [5], that matches some of the source’s structure, we first need to discover something about how the information is represented in the source. This subtask can be formulated as discovering typical structures of documents.

- **General information content.** Very often the user may not be looking for anything specific at all but rather may wish to discover the general information content or an overview of a source. A more appropriate search mode for such users would be examining the structure of the source, just like examining the table-of-content if a reader likes to gain a gist of a book. This can be done by requesting to lay out the structure of each document or to lay out some typical structures if there are many documents. Since such requests are likely to be frequent, typical structures should be discovered off-line and stored in a database that is queried or browsed on demand. Based on the structures examined, the user may, at any time, switch to a more focused search method, such as formulating a query or browsing some documents. The point is that searching or browsing stored typical structures is much faster than searching or browsing actual documents.

- **A guide for building indexes and views.** To speed up information retrieval, it is desirable to construct indexes and views on frequently retrieved, typically occurred structures. Discovering typical structures helps this task. For example, suppose that 98% person documents have Name label and most of time documents are retrieved using this label, indexing Name (e.g., by a B-tree, hash table, or inverted list) will speed up document retrieval.

- **Structure-based document clustering.** A tree-like subdocument reference within a document is usually ignored by traditional clustering methods. In the semistructured view of documents, each sub-document reference is labeled by its topic, and the topic of a document can be represented by a tree-like structure of such topics. In the tree-like structure, the topic of a subdocument is relative to that of its superdocument. By clustering documents based on such topical structures, the search for IBM catalog prices for personal computers will not return things such as an advertisement for an “I Bought Mac” T-shirt and the SIGIR home page.

- **Discovering interests/access patterns.** Detecting user’s interests and browsing patterns on the Web can help organize Web pages and attract more businesses. This can be modeled as discovering typical structures of a collection of documents consisting of hyperlinked Web pages accessed in different sessions. Each document is rooted at the entry page of one session. By labeling pages with either topics or site information, a typical structure captures user’s interests and access patterns.

Before performing the discovery task, the structure of each document should be extracted. The extraction removes the unstructured data such as image and video that do not contribute to the structure of the source. Some systems provide “wrappers” or one can write a parser or thesaurus for the extraction [11]. In this paper, we assume such extraction has been done.

The paper is organized as follows. Section 2 defines the discovery problem. Section 3 presents the algorithm. Section 4 presents a case study using a real dataset. Section 5 reviews related work. Section 6 concludes the paper.
2 The Problem

We adopt the Object Exchange Model (OEM) for representing semistructured documents. For a detailed account of OEM, the interested reader may refer to [1, 4, 8].

Every document o in OEM consists of an identifier, denoted &ko, and a value, denoted val(&ko). The identifier &ko uniquely identifies document o. The value val(&ko) is either an atomic document, such as an integer or a string; or a list document of the form < l1 : &ko1, . . . , lp : &kop >; or a bag document, of the form { l1 : &ko1, . . . , lp : &kop }. &ko are identifiers of subdocuments o1, . . . , ol, are labels that describe the role of subdocuments o1. As usual, the order in a bag does not matter, but it does in a list. Repeating of subdocuments is allowed in a bag or a list.

The OEM can be conveniently represented by a labeled and ordered multigraph: nodes are document identifiers; for each reference l1 : &ko in val(&ko), there is an edge (&ko, o1) labeled li. If val(&ko) is a list, all outgoing edges at &ko are ordered. If val(&ko) is a bag, all outgoing edges at &ko are unordered. Root documents, specified by the user, are those whose structures will be discovered. An OEM is cyclic if its graph is cyclic. Indeed, OEM graphs of many Web documents are cyclic.

We need a mechanism for generalizing the structures of several documents. This is defined by the notion of tree-expressions below. For the rest of the paper, symbol ? denotes the wildcard that matches any level, and ⊥ denotes the null schema containing no structure.

Tree-expressions. First, consider acyclic OEM graphs. For any label l, l' denotes either l or the wildcard ?. Assume that te1 are tree-expressions of documents o1, 1 ≤ i ≤ p.

• ⊥ is a tree-expression of any document.
• If val(&ko) = {l1 : &ko1, . . . , lp : &kop} and {i1, . . . , ik} is a subset of {1, . . . , p}, k > 0, (l'1 : te11, . . . , l'k : te1k) is a tree-expression of document o.
• If val(&ko) = < l1 : &ko1, . . . , lp : &kop > and < i1, . . . , ik > is a subsequence of < 1, . . . , p >, k > 0, < l'1 : te11, . . . , l'k : te1k > is a tree-expression of document o.

To ensure that the "terminal" label on a path is not a wildcard, if te1i is ⊥, l'k must be li. A tree-expression {l1 : te11, . . . , lp : te1p} or < l1 : te11, . . . , lp : te1p > has a tree representation in which te1i's form the subtrees, each being labeled li.

Example 2.1 Consider Figure 1. te1 = {Player : {Name : ⊥}, Name : ⊥} is a tree-expression of documents &1, &20, &24, so is the result of replacing Player with ?. However, replacing any Name with ? does not result in a tree-expression because "terminal" labels cannot be the wild-card. te2 = {Player : {Name : ⊥, Nationality : ⊥}, Name : ⊥} is a tree-expression of documents &1 and &20, but not of &24. te3 = {? : {Name : ⊥, Nationality : ⊥}} is shared by chubs &1, &20, &24, that is, some member in these chubs (i.e., either Player or Founder) has both Name and Nationality.

Figure 2 shows the trees for te1, te2, and te3. (End)

Cyclic references. For cyclic OEM graphs, tree-expressions defined above may be infinitely large. To solve this problem, we allow a leaf node to be named by special symbols ⊥i, i > 0. Essentially, ⊥i is the alias of the ancestor that is i nodes above the leaf node in the tree-expression, called the ith ancestor. Figure 3 shows how a cycle (on the left) is represented in a tree-expression (on the right). The "leaf" named ⊥3 is the alias of third ancestor A. By treating each ⊥i as a leaf node, we are able to continue dealing with a tree-expression as a tree.

Very often, we are interested in most "informative" substructures. In Figure 2, te1 is more informative than te2 which is more informative than te3. This is compared by the "weaker than" relation between two tree-expressions.

Weaker than, ⊥i is weaker than every tree-expression. ⊥i is weaker than itself.

• {l1 : te11, . . . , lp : te1p} is weaker than {l'1 : te'11, . . . , l'p : te'1p} if every te1i is weaker than some te'1j, where either li = l'j or li = ?.

• < l1 : te11, . . . , lp : te1p > is weaker than < l'1 : te'11, . . . , l'p : te'1p > if every te1i is weaker than some te'1j, where either li = l'j or li = ?, and < j1, . . . , jp > is a subsequence of < 1, . . . , q >.

Intuitively, if te1 is weaker than te2, all structural information of te1 is found in te2.

Definition 2.1 (The discovery problem) Consider a tree-expression te. The support of te is the number of root documents d such that te is weaker than d. For a user-specified minimum support MINSUPP, te is frequent if the support of te is not less than MINSUPP, te is maximal if te is frequent and is not weaker than other frequent tree-expressions. The discovery problem is to find all maximally frequent tree-expressions. (End)

If we are interested in all frequent tree-expressions, we can turn off the maximality requirement in the above problem. For the rest of the paper, we consider only maximally frequent tree-expressions.
Example 2.2 In Figure 1, suppose that &1, &20, &24 are the root documents. Refer to Example 2.1 and Figure 2 for te_1, te_2, te_3, and te_4. The support of te_1 and te_3 is 3, and the support of te_2 and te_4 is 2. If MINSUP = 3, te_1 and te_3 are frequent, but te_2 and te_4 are not. Both te_1 and te_3 are also maximally frequent. Suppose MINSUP = 2. Then te_1, te_2, te_3, te_4 all are frequent. But since te_1, te_2, te_3 are weaker than te_4, only te_4 is maximally frequent. (End)

3 The Algorithm

The problem of finding frequent subsets from a collection of sets [2] is related to our problem. Unlike flat sets, however, documents have structures, in the form of labeled hierarchical subdocument references. In addition, we allow the wild-card label that matches with any label. Therefore, the algorithm in [2] is not directly applicable to the problem at hand. This justifies to present a new mining algorithm.

We do not assume that the OEM graph G fits in the memory entirely. Each node in the graph is accessed by its address, either on disk or in memory. To avoid repeatedly traversing subgraphs due to multiple edges between two nodes (recall that G is a multi-graph), we assume that G contains at most one edge between two nodes and that one set of labels is associated with each edge. $L(w, z)$ denotes the set of labels associated with edge (w, z). The intended use of $L(w, z)$ is as follows: as we traverse a path w_1, \ldots, w_k, where w_j's are nodes, we have effectively traversed all paths labeled by the sequences in the cross product $L(w_1, w_2) \times \ldots \times L(w_{k-1}, w_k)$. The information stored for each node w includes addresses of all subnodes, $L(w, z)$ for every subnode z, and positions in $val(w)$ at which each label in $L(w, z)$ appears.

One important property of our algorithm is to traverse simple paths (i.e., paths on which the only first and last nodes can be the same) of G in the depth-first order. Ideally, nodes of G should be stored in this depth-first order. However, since several supernodes may reference the same subnode, nodes adjacent in the depth-first order may not be on the same disk page and may be entered from different supernodes. To reduce the disk access, frequently referenced nodes, i.e., those with a large in-degree, can be stored in memory and infrequently referenced nodes stored on the disk. The exact implementation on disk is transparent to the presentation of our algorithm.

3.1 Representing tree-expressions

A k-tree-expression is a tree-expression containing k leaf nodes (i.e., nodes for \bot or \top). A leaf node can be represented by a path of the form $[\top, l_1, \ldots, l_n, \bot]$, where symbol \top represents a generic root document, and l_i is labeled on the simple path in G starting from a root document. \bot is replaced with \top if the last node on the path is identical to the ith ancestor on the path. A k-tree-expression can be constructed by “gluing” a sequence of k paths that are not prefix of each other. First, \top of all paths are glued together to form the root. Recursively, all paths at a node that match the next label are glued together, such that the order of leaf nodes is the order of paths in the sequence. In other words, the k-tree-expression constructed is the “prefix tree” of the k paths that preserves their order in the sequence.

However, the above representation has two problems.

![Figure 4: Constructing tree-expressions](image)

First, no repeating labels for subdocuments are constructed because they are always glued together. For example, $\{l_1 : \bot, l_1 : \bot\}$ is a legal tree-expression of document $\{a, \& a, l_1 : b\}$, but cannot be constructed using the only path $[\top, l_1, \bot]$. We solve this problem by distinguishing all repeating labels using different superscripts. In the above example, instead of generating only one path $[\top, l_1, \bot]$, we generate two paths $[\top, l_1^1, \bot]$ and $[\top, l_1^2, \bot]$, where superscripts 1 and 2 correspond to the two occurrences of label l_1 for two sibling documents.

Second, the wild-card label \bot is not considered. This problem can be solved by adding the wild-card label \bot to the set of labels $L(w, z)$ associated with each edge (w, z). The maximal superscript for \bot is the maximal number of occurrences of a label for sibling documents.

Path-expressions. With the above modifications, a k-tree-expression can be represented by a sequence $p_1 \ldots p_k$ of k paths of the form $[\top, l_1^1, \ldots, l_n^1, \bot]$ or $[\top, l_1^2, \ldots, l_n^2, \bot]$, such that l_i are labels on a simple path in G starting at a root document, j_i are superscripts for labels l_i, and no p_i is a prefix of another. The last label l_n must be a non-wild-card, as required for tree-expressions. Paths $[\top, l_1^3, \ldots, l_n^3, \bot]$ or $[\top, l_1^4, \ldots, l_n^4, \bot]$ are called path-expressions below.

Example 3.1 Consider the root document t defined as

$$val(\&t) = \{l_0 : \& a, l_1 : \& c\}$$
$$val(\&c) = \{l_0 : \& a, l_1 : \& b, l_2 : \& c, l_3 : \& d, l_4 : \& a, l_5 : \& c\}$$
$$val(\&a) = \{l_0 : \& a, l_1 : \& c\}$$

The maximal superscript for l_0 is 3, and the maximal superscript for l_2 is 2. Thus, the maximal superscript for l_4 is 3. Consider two tree-expressions of t:

$$te_1 = \{l_0 : \{l_2 : \top, l_0 : \top, l_1 : \top\}, l_0 : \top\}$$
$$te_2 = \{l_2 : \{l_2 : \top, l_0 : \top, l_0 : \top\}, l_0 : \top\}$$

As shown in Figure 4, te_1 can be constructed by sequence $p_{12} p_{23}$, and te_2 by sequence $p_{13} p_{32}$, where p_i are path-expressions:

$$p_1 = [\top, l_1^1, l_2^0, l_0^0, \bot]$$
$$p_2 = [\top, l_1^1, l_2^0, l_0^0, \bot]$$
$$p_3 = [\top, l_1^2, l_2^0, \bot]$$
$$p_4 = [\top, l_1^2, l_2^0, \bot]$$
$$p_5 = [\top, l_1^2, l_2^0, \bot].$$

For the rest of the paper, a k-tree-expression is represented by a sequence $p_1 \ldots p_k$ of k path-expressions, as defined above.
3.2 The algorithm

Searching the whole space of k-tree-expressions is prohibitive. Fortunately, we do not need to consider a k-tree-expression if some “substructure” of it is known to be infrequent. This is stated below.

Theorem 3.1 Let p_i denote path-expressions. Every frequent k-tree-expression p_1 . . . p_k is constructed by two frequent (k-1)-tree-expressions p_1 . . . p_k-2p_k-1 and p_1 . . . p_k-2p_k.

Following Theorem 3.1, we compute frequent k-tree-expressions in the order of k, starting with frequent 1-tree-expressions, i.e., frequent path-expressions. We examine a k-tree-expression p_1 . . . p_k only if the two (k-1)-tree-expressions p_1 . . . p_k-2p_k and p_1 . . . p_k-2p_k are frequent. On the appearance, Theorem 3.1 looks similar to the subset property in [3]; an itemset {i_1, . . . , i_k} is frequent only if both {i_1, . . . , i_k-1} and {i_1, . . . , i_k-2, i_k} are frequent. This may suggest that [3] can be applied here by treating each tree-expression p_1 . . . p_k as an itemset {p_1, . . . , p_k}. However, this does not work. In Figure 4, p_1p_2p_3 is weaker than p_1p_2p_3, but {p_1, p_2, p_3} is not a subset of {p_1, p_2, p_3}. Consequently, it is possible that tree-expression p_1p_2p_3 is frequent, but itemset {p_1, p_2, p_3} is not. Another difference is that, in general, p_1 . . . p_k and its permutations represent different tree-expressions. For example, p_1p_2p_3 and p_1p_2p_3 in Figure 4 are different. In addition, we need to deal with wild-card labels that require special treatments.

Since p_1 . . . p_k being maximally frequent implies that p_1 . . . p_k-2p_k+1 are not maximally frequent (because the latter are weaker than the former), we will perform the pruning after constructing all frequent tree-expressions. For the rest of the paper, F_k denotes the set of frequent k-tree-expressions.

Phase I: Computing F_1

This phase finds all frequent 1-tree-expressions in the form of path-expressions [T, l_1, . . . , l_n], [T, l_1, . . . , l_n] or [T, l_1, . . . , l_n], [T, l_1, . . . , l_n, ∅]. Since the represented 1-tree-expressions depend only on labels k_i’s, not on superscripts j’s, the support of a 1-tree-expression is denoted sup(l_1, . . . , l_n, ∅) or sup(l_1, . . . , l_n, ∅), defined as the number of root documents in a simple path in G labeled l_1, . . . , l_n.

Here is the computation of sup. For each root document t, we depth-first traverse all simple paths in G starting from t. On visiting a node w, let t.w_1 . . . w_n be the sequence of nodes on the path being traversed.

Acyclic path: w_n is not identical to any w_i, i < n. We increment all sup(l_1, . . . , l_n, ∅) if they were not increased for t, where (l_1, . . . , l_n) is in the cross product L(t, w_1) x L(w_1, w_2) x . . . x L(w_{n-1}, w_n) = {T}.

Cyclic path: w_n is identical to some w_i, i < n. We increment all sup(l_1, . . . , l_n, ∅) if they were not increased for t, where (l_1, . . . , l_n) is in the cross product L(t, w_1) x L(w_1, w_2) x . . . x L(w_{n-1}, w_n) = {T}.

To find all frequent 1-tree-expressions F_1, for each sup(l_1, . . . , l_n, ∅) or sup(l_1, . . . , l_n, ∅), not less than MINSUP, all path-expressions of the form [T, l_1, . . . , l_n, ∅] or [T, l_1, . . . , l_n, ∅] are added to F_1. The next example shows the work of computing F_1.

Example 3.2 Consider the OEM graph in Figure 5 for two root documents kt_1 and kt_2 defined as:

![Figure 5: The OEM graph in Example 3.2](image)

val(kt_1) = [l_1 : &a, l_2 : &a] and
val(kt_2) = [l_4 : &b, l_4 : &a1].

&a, &b are defined as

val(&a) = {l_1 : &a1, l_2 : &a} and
val(&b) = {l_4 : l_4, l_4 : &a2, l_2 : &a2}.

&a1 and &a2 are atomic documents. A squared node represents a list document and a circled node represents a bag document. &b has repeated (twice in val(&b)), its maximal superscript is 2 and so is the maximal superscript of &a. Suppose that the MINSUP = 2. 8 frequent path-expressions p_1 . . . p_k are found during Phase I, shown in Table 1. For example, sup(l_4, ∅) = 2 because each root document has a simple path labeled l_4. From this support, two frequent path-expressions, i.e., p_1 and p_2, are generated. The other frequent path-expressions are similarly generated. (End)

Phase II: Computing F_k

The search space. Following Theorem 3.1, each frequent k-tree-expression p_1 . . . p_k is constructed by two frequent (k-1)-tree-expressions p_1 . . . p_k-2p_k and p_1 . . . p_k-2p_k, called a matching pair below. We will represent F_1, . . . , F_{k-1} by a (k-1)-candidate-tree, denoted Π_{k-1}, that facilitates retrieval of all matching pairs.

Π_{k-1} is a trie of depth k - 1. Each non-root node in Π_{k-1} represents a frequent path-expression p_i in F_1, i.e., the root-to-leaf path of length j ≤ k - 1, called a j-candidate-path, represents a frequent j-tree-expression in F_j; given by the j path-expressions on the root-to-leaf path. Therefore, a matching pair p_1 . . . p_k-2p_k and p_1 . . . p_k-2p_k is represented by a pair of (k-1)-candidate-paths ending at two sibling nodes. Therefore, each leaf node v in Π_{k-1} represents two things: the path-expression at v and the candidate-path ending at v. To begin with, Π_1 has one child for each path-expression in F_1.

Generating candidates. To generate Π_k from Π_{k-1}, for every matching pair p_1 . . . p_k-2p_k and p_1 . . . p_k-2p_k represented by sibling leaf nodes l and l’, we create a new child under l for representing the k-candidate-path p_1 . . . p_k-2p_k. This operation is called extending l by l’. Figure 6 shows Π_1, Π_2, Π_3 generated by three frequent path-expressions p_1, p_2, p_3, assuming that all 2-tree-expressions and 3-tree-expressions are frequent.

Counting the support. The support of k-candidate-paths is counted by scanning all root documents. For
However, some unnatural candidate-paths are needed to generate natural ones in the construction of Theorem 3.1. In Figure 7, for example, natural $p_1p_2p_3$ is generated by extending natural p_1p_2 by unnatural p_3p_1. Therefore, simply pruning all unnatural candidate-paths does not work. On the other hand, extending an unnatural candidate-path always generates an unnatural candidate-path because of the unnatural prefix, and for the same reason the result of such extension is not useful to generate a natural candidate-path. This gives the first pruning strategy.

Strategy I. A leaf node is extended only if it represents a natural candidate-path. After all extensions in Π_{k-1} are considered, leaf nodes representing unnatural $(k - 1)$-candidate-paths can be pruned.

By Strategy I, an unnatural candidate-path is never extended. This is highly effective because there are much more unnatural candidate-paths than natural ones. Some unnatural candidate-paths don’t even have to be generated. A tree-expression is super-unnatural at some node the superscripts on branches for the same label are not sorted. A candidate-path is super-unnatural if it represents a super-unnatural tree-expression. In Figure 7, the tree-expression for p_1p_3 is unnatural but is not super-unnatural, and p_1p_2 is super-unnatural. An extension involving a super-unnatural candidate-path always generates a super-unnatural candidate-path. Thus, we have

Strategy II. An extension is performed only if it does not generate a super-unnatural candidate-path.

Finally, if extending leaf node l generates a frequent candidate-path, the candidate-path at l becomes non-maximally frequent because it is weaker than the new tree-expression generated. Since the candidate-path at l will not be used in a later pass, it can be pruned.

Strategy III. If extending l generates a frequent candidate-path, prune the tree-expression represented by l.

A leaf node l becomes non-leaf after extended. Thus, we can enforce Strategy III by revising F_2 to be only the leaf nodes at level k in Π_k. Another strategy is to prune candidate-paths that are reorderings of subtrees of a bag node. We omit the detail.

Example 3.3 Continue with Example 3.2. Figure 8(a) shows Π_1, Π_2, Π_3, corresponding to levels 1, 2, and 3, respectively. 3 frequent 2-candidate-paths and 1 frequent 3-candidate-paths are generated. Candidate-paths not included in Π_3 are either not frequent or pruned by our pruning strategies. (Please refer to Table 1 for the actual path-expressions represented by p_i.) For example, all 2-candidate paths p_1p_4 and p_2p_4 are natural, and p_1p_3 is unnatural. Note that there are far more unnatural candidate-paths than natural ones, just like far more unsorted sequences than the sorted sequence. Essentially, we only need to consider natural candidate-paths.
\(F_2 \) and \(F_3 \), and the tree representation of tree-expressions in \(F_2 \) and \(F_3 \). (End)

Phase III: The maximal phase

Let \(\Pi_3 \) be the candidate-tree at the end of Phase II. Phase III prunes all non-maximally tree-expressions represented by leaf nodes of \(\Pi_3 \). One observation is that, for \(i > j \), no \(i \)-tree-expression can be weaker than a \(j \)-tree-expression. For each \(j \), we first find \(j \)-candidates in \(F_3 \) that are maximally frequent with respect to \(F_3 \). Let this result be \(M_j \). Then for \(j \) from \(k \) to 1, we add a \(j \)-candidate in \(M_j \) to the result only if it is not weaker than any candidate already in the result.

Example 3.4 Continue with Example 3.3. \(M_1 \) contains the three tree-expressions for \(\pi_1, \pi_3, \pi_4 \). \(M_2 \) contains the three tree-expressions for \(\pi_3 \pi_1, \pi_3 \pi_3, \pi_3 \pi_4 \). \(M_3 \) contains the only tree-expression for \(\pi_3 \pi_3 \pi_1 \). All tree-expressions in \(M_1 \) and \(M_2 \) are weaker than the tree-expression in \(M_3 \). Thus, only one maximally frequent tree-expression is found, that is, \(\pi_3 \pi_3 \pi_1 \) or \(<? : \{ \pi_1 : \bot, \pi_3 : \bot \}, \pi_3 : \bot > \).

It can be verified from the OIM in Figure 5 that this is the only maximally frequent tree-expression. (End)

If we want to find all frequent tree-expressions, Phase III should be skipped and tree-expressions represented by all non-root nodes of \(\Pi_3 \) should be returned.

Testing “weaker than”

To test whether a tree-expression \(te_1 \) is weaker than a tree-expression \(te_2 \) (as defined in Section 2), we need to search for a “match” of the tree \(te_1 \) inside the tree \(te_2 \). Recursively, a match is found for a non-leaf node \(v \) in \(te_1 \) if and only if matches are found for the label of \(v \) and for all subnodes of \(v \). Unordered subnodes in \(te_1 \) require a complete bipartite match in \(te_2 \), and ordered subnodes require a sublist match in \(te_2 \). We omit the detail.

4. Discovery from a real dataset

To test if our algorithm acts as expected, we apply the algorithm to the Internet Movies Database (IMDb) at http://us.imdb.com/ for discovering typical structures of movies documents. IMDb currently covers more than 95,000 movies and over 1,300,000 filmography entries. All information about movies are organized into HTML documents, with an example in Figure 9 for a segment about “Star Wars”. We have chosen the top 100 most voted movies as classified by the source. We set
MINISUP to 15% and found the following three maximally frequent tree-expressions.

The first maximally frequent tree-expression, with 22% support, is given in Figure 10. (We have omitted all in the display of tree-expressions.) The tree-expression tells that one actor received award, four actors had spouses, two of which were doing movie-related jobs (because only movies-related occupations are documented), etc.

The second maximally frequent tree-expression, with the support of 17%, is the same as the first one, except that the last five lines are replaced by

?:{Name, Place, Spouse:{Name}, Category}.

The wild-card ? represents any of Writer, Composer, Cinematographer, Editor, and Producer. This substructure was not discovered in the first maximally frequent tree-expression because no single occupation has the minimum support for this substructure, but the five combined together do. Since Director is explicitly captured, ? does not include Director.

The third maximally frequent tree-expression, with the support of 16%, is the same as the first one except that the line for Director is deleted and the last five lines are replaced with

?:{Name, Place, Award, Spouse:{Name, Occupation}, Category}.

The wild-card ? here covers Director, Writer, Composer, Cinematographer, Editor, and Producer. This substructure was not discovered in the second tree-expression because the separation of Director makes it not frequent enough.

These tree-expressions are maximally frequent, so their supports are not very high. Non-maximally frequent tree-expressions have much higher supports. For example, every movie document has labels: Title, Release, Year, Country, and Director. Discovered tree-expressions can be stored and retrieved later. For example, one can retrieve such information to gain the general information content of the movie source, or to discover the vocabulary and structure of the source, or to find out statistics of missing or known information (such as the Nationality of cast). Often, it is necessary to keep track of the identifiers of movie documents supporting each typical structure, i.e., URL addresses in this case. This can be easily incorporated into our algorithm when counting the support of each candidate.

We have also conducted intensive experiments to study the efficiency of the algorithm for large collections of documents. Due to space limitation, the details are omitted.

5 Related Work

Our work is related to mining association rules from supermarket data [2, 3]. An example of association rules is "if a customer buys diaper, he/she also buys beer with 80% confidence". The core of the association rule problem is to find all subsets that are contained in at least some number of given sets. In [3], constructing larger candidate subsets is done by joining smaller frequent subsets, and counting support is done by a set containment test. Our work has some important differences. First, a document contains subdocument references, which can be hierarchical, labeled, ordered, and cyclic. Second, a tree-expression has a tree-like structure, constructing tree-expressions and counting support require more than set containment test and join of flat sets. Third, the search space of structures is much larger than that of sets and requires more effective pruning strategies. Finally, the use of the wild-card label makes our problem very different from the association rule problem.

There are some works on discovering structures from semi-structured data. In [10] we considered discovering typical structures for building a structured layer above semi-structured data to provide the benefits of standard database access methods. In the current paper, we exploit typical structures themselves for information retrieval. Also, in [10] no algorithm was given, and cyclic references and ordered references were not considered. [7] considered schema discovery for a single document.

We considered the discovery task for a collection of documents, therefore, have to deal with the interestingness issue of structures. [9] has considered a collection of documents, as in our case, and derived a uniform object-oriented database schema for all documents. They first find the hierarchy for each document and merge them into a global schema. We do not construct such a global schema. Instead, we discover "typical" structures of doc-
6 Conclusion

As the amount of documents available on-line grows rapidly, we find that most references to important fields are labeled and hierarchical, sometimes ordered and cyclic. The label of a reference tells the role of the field and the hierarchy of references tells how the information is structured in the source. Traditional methods treat a text document either as a set of words or as a list of words, and have not explored such structures of documents. We observed that many documents describing the same type of information are similarly structured, though not identically structured. Typical structures shared by a large number of documents can reveal the general information content and representation in the source, and discovering typical structures is important for both the user and the builder of the source. We have defined the discovery problem and proposed a solution based on a new representation of search space. The effectiveness was evaluated on a real dataset. Traditional information access tends to emphasize the narrowly specified querying and the largely dis-oriented browsing. Our approach of mining typical structures of documents provides an alternative to information access that can overcome some limitations of these methods.

References

