Which of the following languages are CFL?

- \(L = \{ a^n b^n c^j \mid 0 < n \leq j \} \)
- \(L = \{ a^n b^j a^n b^j \mid n > 0, j > 0 \} \)
- \(L = \{ a^n b^j a^k b^p \mid n + j \leq k + p, n > 0, j > 0, k > 0, p > 0 \} \)

Pumping Lemma for Regular Language’s: Let \(L \) be a regular language, then there is a constant \(m \) such that \(w \in L \), \(|w| \geq m \), \(w = xyz \) such that

- \(|xy| \leq m \)
- \(|y| \geq 1 \)
- for all \(i \geq 0 \), \(xy^i z \in L \)

Pumping Lemma for CFL’s Let \(L \) be any infinite CFL. Then there is a constant \(m \) depending only on \(L \), such that for every string \(w \) in \(L \), with \(|w| \geq m \), we may partition \(w = uvxyz \) such that:

- \(|uvy| \leq m \), (limit on size of substring)
- \(|vy| \geq 1 \), (\(v \) and \(y \) not both empty)
- For all \(i \geq 0 \), \(uv^i xy^i z \in L \)

Proof: (sketch) There is a CFG \(G \) s.t. \(L = L(G) \).

Consider the parse tree of a long string in \(L \).

For any long string, some nonterminal \(N \) must appear twice in the path.
Example: Consider $L = \{a^nb^nc^n : n \geq 1\}$. Show L is not a CFL.

- **Proof:** (by contradiction)

 Assume L is a CFL and apply the pumping lemma.

 Let m be the constant in the pumping lemma and consider $w = a^mb^mc^m$. Note $|w| \geq m$.

 Show there is no division of w into $uvwxyz$ such that $|vy| \geq 1$, $|vxy| \leq m$, and $uv^iwy^iz \in L$ for $i = 0, 1, 2, \ldots$.

 Case 1: Neither v nor y can contain 2 or more distinct symbols. If v contains a’s and b’s, then $uv^2wy^2z \notin L$ since there will be b’s before a’s.

 Thus, v and y can be only a’s, b’s, or c’s (not mixed).

 Case 2: $v = a^t$, then $y = a^t$ or b^t s.t. $|vxy| \leq m$

 If $y = a^t$, then $uv^2wy^2z = a^{m+t_1+t_2}b^m \notin L$ since $t_1 + t_2 > 0$, $n(a) > n(b)$’s (number of a’s is greater than number of b’s).

 If $y = b^t$, then $uv^2wy^2z = a^{m+t_1}b^{m+t_2}c^m \notin L$ since $t_1 + t_3 > 0$, either $n(a) > n(c)$’s or $n(b) > n(c)$’s.

 Case 3: $v = b^t$, then $y = b^t$ or c^t

 If $y = b^t$, then $uv^2wy^2z = a^mb^{m+t_1+t_2}c^m \notin L$ since $t_1 + t_2 > 0$, $n(b) > n(a)$’s.

 If $y = c^t$, then $uv^2wy^2z = a^mb^{m+t_1}c^{m+t_2} \notin L$ since $t_1 + t_3 > 0$, either $n(b) > n(a)$’s or $n(c) > n(a)$’s.

 Case 4: $v = c^t$, then $y = c^t$

 Then, $uv^2wy^2z = a^mb^mc^{m+t_1+t_2} \notin L$ since $t_1 + t_2 > 0$, $n(c) > n(a)$’s.

 Thus, there is no breakdown of w into $uvwxy$ such that $|vy| \geq 1$, $|vxy| \leq m$ and for all $i \geq 0$, uv^iwy^iz is in L. Contradiction, thus, L is not a CFL. Q.E.D.
Example Why would we want to recognize a language of the type \(\{a^n b^n c^n : n \geq 1\} \)?

Example: Consider \(L = \{a^n b^n c^p : p > n > 0\} \). Show \(L \) is not a CFL.

- **Proof:** Assume \(L \) is a CFL and apply the pumping lemma. Let \(m \) be the constant in the pumping lemma and consider \(w = \ldots \) Note \(|w| \geq m \).

 Show there is no division of \(w \) into \(uvxyz \) such that \(|vy| \geq 1, |vxy| \leq m \), and \(uv^i xy^i z \in L \) for \(i = 0, 1, 2, \ldots \).

Thus, there is no breakdown of \(w \) into \(uvxyz \) such that \(|vy| \geq 1, |vxy| \leq m \) and for all \(i \geq 0 \), \(uv^i xy^i z \in L \) is in \(L \). Contradiction, thus, \(L \) is not a CFL. Q.E.D.
Example: Consider $L = \{a^ib^k : k = j^2\}$. Show L is not a CFL.

- **Proof:** Assume L is a CFL and apply the pumping lemma. Let m be the constant in the pumping lemma and consider $w = \underline{\text{________}}$. Show there is no division of w into $uvwxy$ such that $|vy| \geq 1$, $|vxy| \leq m$, and $uv^ixy^iz \in L$ for $i = 0, 1, 2, \ldots$.

 Case 1: Neither v nor y can contain 2 or more distinct symbols. If v contains a’s and b’s, then $uv^2xy^2z \notin L$ since there will be b’s before a’s.

 Thus, v and y can be only a’s, and b’s (not mixed).

Thus, there is no breakdown of w into $uvwxy$ such that $|vy| \geq 1$, $|vxy| \leq m$ and for all $i \geq 0$, uv^ixy^iz is in L. Contradiction, thus, L is not a CFL. Q.E.D.

Exercise: Prove the following is not a CFL by applying the pumping lemma. (answer is at the end of this handout).

Consider $L = \{a^{2n}b^{2p}c^nd^p : n, p \geq 0\}$. Show L is not a CFL.
Example: Consider \(L = \{ w\bar{w}w : w \in \Sigma^* \} \), \(\Sigma = \{ a, b \} \), where \(\bar{w} \) is the string \(w \) with each occurrence of \(a \) replaced by \(b \) and each occurrence of \(b \) replaced by \(a \). For example, \(w = baaa, \bar{w} = abbb, w\bar{w} = baaababb \). Show \(L \) is not a CFL.

- **Proof:** Assume \(L \) is a CFL and apply the pumping lemma. Let \(m \) be the constant in the pumping lemma and consider \(w = \ldots \)

 Show there is no division of \(w \) into \(uvxyz \) such that \(|vy| \geq 1, |vxy| \leq m \), and \(uv^i xy^i z \in L \) for \(i = 0, 1, 2, \ldots \).

Thus, there is no breakdown of \(w \) into \(uvxyz \) such that \(|vy| \geq 1, |vxy| \leq m \) and for all \(i \geq 0 \), \(uv^i xy^i z \) is in \(L \). Contradiction, thus, \(L \) is not a CFL. Q.E.D.
Example: Consider $L = \{a^n b^n b^n a^n\}$. L is a CFL. The pumping lemma should apply!

Let $m \geq 4$ be the constant in the pumping lemma. Consider $w = a^m b^m b^m a^m$.

We can break w into $uvxyz$, with:

If you apply the pumping lemma to a CFL, then you should find a partition of w that works!

Chap 8.2 Closure Properties of CFL's

Theorem CFL’s are closed under union, concatenation, and star-closure.

• Proof:
 Given 2 CFG $G_1 = (V_1, T_1, S_1, P_1)$ and $G_2 = (V_2, T_2, S_2, P_2)$

 – Union:
 Construct G_3 s.t. $L(G_3) = L(G_1) \cup L(G_2)$.
 $G_3 = (V_3, T_3, S_3, P_3)$

 – Concatenation:
 Construct G_3 s.t. $L(G_3) = L(G_1) \circ L(G_2)$.
 $G_3 = (V_3, T_3, S_3, P_3)$
Theorem CFL’s are NOT closed under intersection and complementation.

Proof:

- Intersection:

- Complementation:

QED.
Theorem: CFL’s are closed under \textit{regular} intersection. If L_1 is CFL and L_2 is regular, then $L_1 \cap L_2$ is CFL.

- **Proof:** (sketch) This proof is similar to the construction proof in which we showed regular languages are closed under intersection. We take a NPDA for L_1 and a DFA for L_2 and construct a NPDA for $L_1 \cap L_2$.

 $M_1 = (Q_1, \Sigma, \Gamma, \delta_1, q_0, z, F_1)$ is an NPDA such that $L(M_1) = L_1$.

 $M_2 = (Q_2, \Sigma, \delta_2, q_0, F_2)$ is a DFA such that $L(M_2) = L_2$.

Example of replacing arcs (NOT a Proof!):
Note this is not a proof, but sketches how we will combine the DFA and NPDA. We must formally define δ_3. If

then

Must show

if and only if

Must show:

$w \in L(M_3)$ iff $w \in L(M_1)$ and $w \in L(M_2)$.

QED.
Questions about CFL:

1. Decide if CFL is empty?

2. Decide if CFL is infinite?

Example: Consider \(L = \{a^{2n}b^{2m}c^nd^m : n, m \geq 0\} \). Show \(L \) is not a CFL.

- **Proof:** Assume \(L \) is a CFL and apply the pumping lemma. Let \(m \) be the constant in the pumping lemma and consider \(w = a^{2m}b^{2m}c^md^m \).

 Show there is no division of \(w \) into \(uvxyz \) such that \(|vy| \geq 1, |vxy| \leq m, \text{ and } uv^ixy^iz \in L \) for \(i = 0, 1, 2, \ldots \).

 Case 1: Neither \(v \) nor \(y \) can contain 2 or more distinct symbols. If \(v \) contains \(a \)'s and \(b \)'s, then \(uv^2xy^2z \not\in L \) since there will be \(b \)'s before \(a \)'s.

 Thus, \(v \) and \(y \) can be only \(a \)'s, \(b \)'s, \(c \)'s, or \(d \)'s (not mixed).

 Case 2: \(v = a^{t_1}, \text{ then } y = a^{t_2} \text{ or } b^{t_3} (|vxy| \leq m) \)

 If \(y = a^{t_2} \), then \(uv^2xy^2z = a^{2m+t_1+t_2}b^{2m}c^md^m \not\in L \) since \(t_1 + t_2 > 0 \), the number of \(a \)'s is not twice the number of \(c \)'s.

 If \(y = b^{t_3} \), then \(uv^2xy^2z = a^{2m+t_1}b^{2m+t_3}c^md^m \not\in L \) since \(t_1 + t_3 > 0 \), either the number of \(a \)'s (denoted \(n(a) \)) is not twice \(n(c) \) or \(n(b) \) is not twice \(n(d) \).

 Case 3: \(v = b^{t_1}, \text{ then } y = b^{t_2} \text{ or } c^{t_3} \)

 If \(y = b^{t_2} \), then \(uv^2xy^2z = a^{2m}b^{2m+t_1+t_2}c^md^m \not\in L \) since \(t_1 + t_2 > 0, n(b) > 2*n(d). \)

 If \(y = c^{t_3} \), then \(uv^2xy^2z = a^{2m}b^{2m+t_1+c^md^m} \not\in L \) since \(t_1 + t_3 > 0 \), either \(n(b) > 2*n(d) \) or \(2*n(c) > n(a) \).

 Case 4: \(v = c^{t_1}, \text{ then } y = c^{t_2} \text{ or } d^{t_3} \)

 If \(y = c^{t_2} \), then \(uv^2xy^2z = a^{2m}b^{2m+t_1+c^md^m} \not\in L \) since \(t_1 + t_2 > 0, 2*n(c) > n(a). \)

 If \(y = d^{t_3} \), then \(uv^2xy^2z = a^{2m}b^{2m+c^md^m+t_3} \not\in L \) since \(t_1 + t_3 > 0 \), either \(2*n(c) > n(a) \) or \(2*n(d) > n(b). \)

 Case 5: \(v = d^{t_1}, \text{ then } y = d^{t_2} \)

 then \(uv^2xy^2z = a^{2m}b^{2m+c^md^m+t_1+t_2} \not\in L \) since \(t_1 + t_2 > 0, 2*n(d) > n(c). \)

 Thus, there is no breakdown of \(w \) into \(uvxyz \) such that \(|vy| \geq 1, |vxy| \leq m \) and for all \(i \geq 0, uv^ixy^iz \)

 is in \(L \). Contradiction, thus, \(L \) is not a CFL. Q.E.D.