Section: Parsing

Parsing: Deciding if $x \in \Sigma^*$ is in $L(G)$ for some CFG G.

Consider the CFG G:

$$
S \rightarrow Aa \\
A \rightarrow AA \mid ABa \mid \lambda \\
B \rightarrow BBa \mid b \mid \lambda
$$

Is ba in $L(G)$? Running time?

New grammar G' is:

$$
S \rightarrow Aa \mid a \\
A \rightarrow AA \mid ABa \mid Aa \mid Ba \mid a \\
B \rightarrow BBa \mid Ba \mid a \mid b
$$

Is ba in $L(G)$? Running time?
Top-down Parser:

- Start with S and try to derive the string.

\[
S \rightarrow aS \mid b
\]

- Examples: LL Parser, Recursive Descent
Bottom-up Parser:

- Start with string, work backwards, and try to derive S.

- Examples: Shift-reduce, Operator-Precedence, LR Parser
The function FIRST:

\[G = (V, T, S, P) \]
\[w, v \in (V \cup T)^* \]
\[a \in T \]
\[X, A, B \in V \]
\[X_I \in (V \cup T)^+ \]

Definition: \(\text{FIRST}(w) \) = the set of terminals that begin strings derived from \(w \).

\[\text{If } w \xrightarrow{*} av \text{ then } \]
\[a \text{ is in FIRST}(w) \]
\[\text{If } w \xrightarrow{*} \lambda \text{ then } \]
\[\lambda \text{ is in FIRST}(w) \]
To compute FIRST:

1. \(\text{FIRST}(a) = \{a\} \)

2. \(\text{FIRST}(X) \)

 (a) If \(X \rightarrow aw \) then
 \(a \) is in \(\text{FIRST}(X) \)

 (b) IF \(X \rightarrow \lambda \) then
 \(\lambda \) is in \(\text{FIRST}(X) \)

 (c) If \(X \rightarrow Aw \) and \(\lambda \in \text{FIRST}(A) \)
 then
 Everything in \(\text{FIRST}(w) \) is in \(\text{FIRST}(X) \)
3. In general, FIRST($X_1 X_2 X_3 ... X_K$) =

- FIRST(X_1)
- \cup FIRST(X_2) if λ is in FIRST(X_1)
- \cup FIRST(X_3) if λ is in FIRST(X_1) and λ is in FIRST(X_2)
 ...
- \cup FIRST(X_K) if λ is in FIRST(X_1) and λ is in FIRST(X_2) ...
 and λ is in FIRST(X_{K-1})
- $\{\lambda\}$ if $\lambda \notin$ FIRST(X_J) for all J
Example:

\[
S \rightarrow aSc \mid B \\
B \rightarrow b \mid \lambda
\]

\[
\text{FIRST}(B) = \\
\text{FIRST}(S) = \\
\text{FIRST}(Sc) =
\]
Example

\[
\begin{align*}
S & \rightarrow \text{BCD} \mid aD \\
A & \rightarrow \text{CEB} \mid aA \\
B & \rightarrow b \mid \lambda \\
C & \rightarrow dB \mid \lambda \\
D & \rightarrow cA \mid \lambda \\
E & \rightarrow e \mid fE
\end{align*}
\]

FIRST(S) =
FIRST(A) =
FIRST(B) =
FIRST(C) =
FIRST(D) =
FIRST(E) =
Definition: $\text{FOLLOW}(X) = \text{set of terminals that can appear to the right of } X \text{ in some derivation.}$

If $S \Rightarrow^* wAav$ then

a is in $\text{FOLLOW}(A)$

To compute FOLLOW:

1. $\$\text{ is in } \text{FOLLOW}(S)$

2. If $A \rightarrow wBv$ and $v \neq \lambda$ then
 $\text{FIRST}(v) - \{\lambda\}$ is in $\text{FOLLOW}(B)$

3. IF $A \rightarrow wB$ OR
 $A \rightarrow wBv$ and λ is in $\text{FIRST}(v)$
 then
 $\text{FOLLOW}(A)$ is in $\text{FOLLOW}(B)$

4. λ is never in FOLLOW
Example:

\[
S \rightarrow aSc \mid B \\
B \rightarrow b \mid \lambda
\]

FOLLOW(S) =

FOLLOW(B) =
Example:

\[S \rightarrow BCD \mid aD \]
\[A \rightarrow CEB \mid aA \]
\[B \rightarrow b \mid \lambda \]
\[C \rightarrow dB \mid \lambda \]
\[D \rightarrow cA \mid \lambda \]
\[E \rightarrow e \mid fE \]

\text{FOLLOW}(S) =
\text{FOLLOW}(A) =
\text{FOLLOW}(B) =
\text{FOLLOW}(C) =
\text{FOLLOW}(D) =
\text{FOLLOW}(E) =