Ch. 7 - Pushdown Automata

A DFA = \((Q, \Sigma, \delta, q_0, F) \)

Modify DFA by adding a stack. New machine is called Pushdown Automata (PDA).

Definition: Nondeterministic PDA (NPDA) is defined by

\[M = (Q, \Sigma, \Gamma, \delta, q_0, z, F) \]

where
Q is finite set of states
Σ is tape (input) alphabet
Γ is stack alphabet
q₀ is initial state
z is start stack symbol (bottom of stack marker)
F ⊆ Q is set of final states.
δ: Q × (Σ ∪ {λ}) × Γ → finite subsets of Q × Γ*

Example of transitions

δ(q₁,a,b) = {(q₃,b),(q₄,ab),(q₆,λ)}

Meaning: If in state q₁ with “a” the current tape symbol and “b” the symbol on top of the stack, then pop “b”, and either

move to q₃ and push “b” on stack
move to q₄ and push “ab” on stack (“a” on top)
move to q₆

Transitions can be represented using a transition diagram.

The diagram for the above transitions is:

Each arc is labeled by a triple: x,y;z where x is the current input symbol, y is the top of stack symbol which is popped from the stack, and z is a string that is pushed onto the stack.

Instantaneous Description:

(q,w,u)

Notation to describe the current state of the machine (q), unread portion of the input string (w), and the current contents of the stack (u).
Description of a Move:

\[(q_1, aw, bx) \rightarrow (q_2, w, yx)\]

iff

Definition Let \(M=(Q, \Sigma, \Gamma, \delta, q_0, z, F)\) be a NPDA. \(L(M) = \{w \in \Sigma^* \mid (q_0, w, z) \xrightarrow{\ast} (p, \lambda, u), p \in F, u \in \Gamma^*\}\). The NPDA accepts all strings that start in \(q_0\) and end in a final state.

Example: \(L = \{a^n b^n \mid n \geq 0\}, \Sigma = \{a, b\}, \Gamma = \{z, a\}\)

Another Definition for Language Acceptance

NPDA \(M\) accepts \(L(M)\) by empty stack:

\(L(M) = \{w \in \Sigma^* \mid (q_0, w, z) \xrightarrow{\ast} (p, \lambda, \lambda)\}\)
Example: \(L = \{ w w^R | w \in \Sigma^+ \}, \Sigma = \{a, b\}, \Gamma = \{z, a, b\} \)

Example: \(L = \{ w w | w \in \Sigma^* \}, \Sigma = \{a, b\} \)

Examples for you to try on your own: (solutions are at the end of the handout).

- \(L = \{ a^n b^m | m > n, m, n > 0 \}, \Sigma = \{a, b\}, \Gamma = \{z, a\} \)
- \(L = \{ a^n b^{n+m} c^m | n, m > 0 \}, \Sigma = \{a, b, c\} \)
- \(L = \{ a^n b^2n | n > 0 \}, \Sigma = \{a, b\} \)
Theorem Given NPDA M that accepts by final state, \exists NPDA M' that accepts by empty stack s.t. $L(M)=L(M')$.

- **Proof** (sketch)

 $M=(Q, \Sigma, \Gamma, \delta, q_0, z, F)$

 Construct $M'=(Q', \Sigma, \Gamma', \delta', q_s, z', F')$

Theorem Given NPDA M that accepts by empty stack, \exists NPDA M' that accepts by final state.

- **Proof** (sketch)

 $M=(Q, \Sigma, \Gamma, \delta, q_0, z, F)$

 Construct $M'=(Q', \Sigma, \Gamma', \delta', q_s, z', F')$
Theorem For any CFL L not containing λ, \exists an NPDA M s.t. $L=L(M)$.

• Proof (sketch)
 Given (λ-free) CFL L.
 \Rightarrow \exists CFG G such that $L=L(G)$.
 \Rightarrow \exists G' in GNF, s.t. $L(G)=L(G')$.
 $G'=(V,T,S,P)$. All productions in P are of the form:
Example: Let \(G'= (V,T,S,P) \), \(P = \)

\[
S \rightarrow aSA \mid aAA \mid b \\
A \rightarrow bBBB \\
B \rightarrow b
\]
Theorem Given a NPDA M, \exists a NPDA M' s.t. all transitions have the form \(\delta(q, a, A) = \{c_1, c_2, \ldots, c_n\} \) where

\[
\begin{align*}
 c_i &= (q_j, \lambda) \\
 \text{or} \quad c_i &= (q_j, BC)
\end{align*}
\]

Each move either increases or decreases stack contents by a single symbol.

- **Proof** (sketch)
Theorem If \(L = L(M) \) for some NPDA \(M \), then \(L \) is a CFL.

- **Proof:** Given NPDA \(M \).

 First, construct an equivalent NPDA \(M' \) that will be easier to work with. Construct \(M' \) such that

 1. accepts if stack is empty
 2. each move increases or decreases stack content by a single symbol. (can only push 2 variables or no variables with each transition)

 \(M' = (Q, \Sigma, \Gamma, \delta, q_0, z, F) \)

 Construct \(G = (V, \Sigma, S, P) \) where

 \(V = \{ (q_i, c, q_j) \mid q_i, q_j \in Q, c \in \Gamma \} \)

 \((q_i, c, q_j) \) represents “starting at state \(q_i \) the stack contents are \(cw \), \(w \in \Gamma^* \), some path is followed to state \(q_j \) and the contents of the stack are now \(w \)”.

 Goal: \((q_0, z, q_f) \) which will be the start symbol in the grammar.

 Meaning: We start in state \(q_0 \) with \(z \) on the stack and process the input tape. Eventually we will reach the final state \(q_f \) and the stack will be empty. (Along the way we may push symbols on the stack, but these symbols will be popped from the stack).
Example:

$L(M) = \{aa^*b\}$, $M = (Q, \Sigma, \Gamma, q_0, z, F)$, $Q = \{q_0, q_1, q_2, q_3\}$, $\Sigma = \{a, b\}$, $\Gamma = \{A, z\}$, $F = \{\}$. M accepts by empty stack.

Construct the grammar $G = (V, T, S, P)$,

$V = \{(q_0Aq_0), (q_0zq_0), (q_0Aq_1), (q_0zq_1), \ldots\}$

$T = \Sigma$

$S = (q_0zq_2)$
Recognizing $aaab$ in M:

- From transition 1: $(q_0 Aq_1) \rightarrow b$
- From transition 2: $(q_1 z q_2) \rightarrow \lambda$
- From transition 3: $(q_0 Aq_3) \rightarrow a$
- From transition 4: $(q_0 z q_0) \rightarrow a(q_0 Aq_0)(q_0 z q_0)$
 - $a(q_0 Aq_1)(q_1 z q_0)$
 - $a(q_0 Aq_2)(q_2 z q_0)$
 - $a(q_0 Aq_3)(q_3 z q_0)$
 - $(q_0 z q_1) \rightarrow a(q_0 Aq_0)(q_0 z q_1)$
 - $a(q_0 Aq_1)(q_1 z q_1)$
 - $a(q_0 Aq_2)(q_2 z q_1)$
 - $a(q_0 Aq_3)(q_3 z q_1)$
- From transition 5: $(q_3 z q_0) \rightarrow (q_0 Aq_0)(q_0 z q_0)$
 - $(q_0 Aq_1)(q_1 z q_0)$
 - $(q_0 Aq_2)(q_2 z q_0)$
- From transition 6: $(q_3 z q_1) \rightarrow (q_0 Aq_0)(q_0 z q_1)$
 - $(q_0 Aq_1)(q_1 z q_1)$
 - $(q_0 Aq_2)(q_2 z q_1)$
 - $(q_0 Aq_3)(q_3 z q_1)$
- From transition 7: $(q_3 z q_2) \rightarrow (q_0 Aq_0)(q_0 z q_2)$
 - $(q_0 Aq_1)(q_1 z q_2)$
 - $(q_0 Aq_2)(q_2 z q_2)$
 - $(q_0 Aq_3)(q_3 z q_2)$
- From transition 8: $(q_3 z q_3) \rightarrow (q_0 Aq_0)(q_0 z q_3)$
 - $(q_0 Aq_1)(q_1 z q_3)$
 - $(q_0 Aq_2)(q_2 z q_3)$
 - $(q_0 Aq_3)(q_3 z q_3)$

Derivation of string $aaab$ in G:

- $(q_0 z q_2) \Rightarrow a(q_0 Aq_3)(q_3 z q_2)$
 - $aa(q_3 z q_2)$
 - $aaa(q_3 z q_2)$
 - $aaa(q_3 z q_2)$
 - $aaa(q_3 z q_2)$
 - $aaa(q_3 z q_2)$
 - $aaab(q_2 z q_2)$
 - $aaab$
Definition: A PDA $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ is *deterministic* if for every $q \in Q$, $a \in \Sigma \cup \{\lambda\}$, $b \in \Gamma$

1. $\delta(q, a, b)$ contains at most 1 element
2. if $\delta(q, \lambda, b) \neq \emptyset$ then $\delta(q, c, b) = \emptyset$ for all $c \in \Sigma$

Definition: L is DCFL iff \exists DPDA M s.t. $L = L(M)$.

Examples:

1. Previous pda for $a^n b^n$ is deterministic.
2. Previous pda for $a^n b^m c^{n+m}$ where $m > 0$ is deterministic.
3. Previous pda for wwR where $w \in \Sigma^+$, $\Sigma = \{a, b\}$ is nondeterministic.

Note: There are CFL’s that are not deterministic.

$L = \{a^n b^n | n \geq 1\} \cup \{a^2 b^n | n \geq 1\}$ is a CFL and not a DCFL.

Proof:

$L = \{a^n b^n : n \geq 1\} \cup \{a^2 b^n : n \geq 1\}$

It is easy to construct a NPDA for $\{a^n b^n : n \geq 1\}$ and a NPDA for $\{a^2 b^n : n \geq 1\}$. These two can be joined together by a new start state and λ-transitions to create a NPDA for L. Thus, L is CFL.

Now show L is not a DCFL. Assume that there is a deterministic PDA M such that $L = L(M)$. We will construct a PDA that recognizes a language that is not a CFL and derive a contradiction.

Construct a PDA M' as follows:

1. Create two copies of M: M_1 and M_2. The same state in M_1 and M_2 are called cousins.
2. Remove accept status from accept states in M_1, remove initial status from initial state in M_2. In our new PDA, we will start in M_1 and accept in M_2.
3. Outgoing arcs from old accept states in M_1, change to end up in the cousin of its destination in M_2. This joins M_1 and M_2 into one PDA. There must be an outgoing arc since you must recognize both $a^n b^n$ and $a^2 b^n$. After reading n b's, must accept if no more b's and continue if there are more b's.
4. Modify all transitions that read a b and have their destinations in M_2 to read a c.

This is the construction of our new PDA.

When we read $a^n b^n$ and end up in an old accept state in M_1, then we will transfer to M_2 and read the rest of $a^2 b^n$. Only the b's in M_2 have been replaced by c's, so the new machine accepts $a^n b^n c^n$. The language accepted by our new PDA is $a^n b^n c^n$. But this is not a CFL. Contradiction! Thus there is no deterministic PDA M such that $L(M) = L$. Q.E.D.
Example: \(L = \{ a^n b^m | m > n, m, n > 0 \} \), \(\Sigma = \{ a, b \} \), \(\Gamma = \{ z, a \} \)

Example: \(L = \{ a^n b^{n+m} c^m | n, m > 0 \} \), \(\Sigma = \{ a, b, c \} \)

Example: \(L = \{ a^n b^{2n} | n > 0 \} \), \(\Sigma = \{ a, b \} \)