Query Optimization
Part II

CPS 216
Advanced Database Systems

Announcements

- Homework #3 due in 7 days (Wednesday, April 9)
- Project milestone #2 due in 12 days (Monday, April 14)
- Recitation session this Friday (April 4)
 - Homework #3 help

Review of the bigger picture

- Consider a space of possible plans (Monday)
 - Rewrite logical plan to combine “blocks” as much as possible
 - Each block will then be optimized separately
 - Fewer blocks → larger plan space
- Estimate costs of plans in the search space (today)
- Search through the space for the “best” plan (next Monday)
Cost estimation

Physical plan example:

- PROJECT (title)
- MERGE-JOIN (CID)
- SCAN (Course)
- SORT (CID)
- SCAN (Enroll)
- SCAN (Student)
- FILTER (name = "Bart")
- MERGE-JOIN (SID)
- SCAN (Event)
- SORT (SID)

- We have: cost estimation for each operator
 - Example: SORT(CID) takes $2 \times B(input)$
 - But what is $B(input)$?
- We need: size of intermediate results

Simple statistics

- Suppose DBMS collects the following statistics for each table R
 - Size of R: $|R|$
 - For each column A in R, the number of distinct A values: $|\pi_A R|$
 - Assumption: $R.A$ values are uniformly distributed over $\pi_A R$ (i.e., all values have the same count in R)
- Statistics are often re-computed periodically; accurate statistics are not required for estimation

Selections with equality predicates

- $Q: \sigma_A = v \ R$
- Additional assumption: v does appear in R
- $|Q| \approx$
Conjunctive predicates

- $Q: \sigma_A = a \land B = b \land R$
- Additional assumption: $(A = a)$ and $(B = b)$ are independent
 - Example:
 - Counterexample:
 - $|Q| \approx |R| \cdot (|\pi_A R| \cdot |\pi_B R|)$
 - Reduce the input size by all selectivity factors

Negated and disjunctive predicates

- $Q: \sigma_A = a \land B = b \land R$
 - Selectivity factor of $\neg p$ is $(1 - \text{selectivity factor of } p)$
- $Q: \sigma_A = a \lor B = b \land R$
 - $|Q| \approx |R| \cdot (1/|\pi_A R| + 1/|\pi_B R|)$?
 - Intuition: $(A = a)$ or $(B = b)$ is equivalent to $\neg (\neg (A = a) \land \neg (B = b))$

Range predicates

- $Q: \sigma_A > v \land R$
 - Not enough information!
 - Just pick, say, $|Q| \approx |R| \cdot 1/3$
 - With more information
 - Largest $R.A$ value: high($R.A$)
 - Smallest $R.A$ value: low($R.A$)
 - $|Q| \approx |R| \cdot (\text{high}(R.A) - v) / (\text{high}(R.A) - \text{low}(R.A))$
 - In practice: sometimes the second highest and lowest are used instead
 - The highest and the lowest are often used by inexperienced database designer to represent invalid values!
Two-way equi-join

- \(Q: R(A, B) \bowtie S(B, C) \)
- Additional assumption: containment of value sets
 - Every row in the "smaller" table (one with fewer distinct values for the join column) joins with some row in the other table
 - That is, if \(|\pi_B R| \leq |\pi_B S| \) then \(\pi_B R \subseteq \pi_B S \)
 - Certainly not true in general

- Does this reflect worst/best/average case?

- \(|Q| \approx \frac{|R| \cdot |S|}{\max(|\pi_B R|, |\pi_B S|)}\)
- Selectivity factor of \(R.B = S.B \) is
 \(1/\max(|\pi_B R|, |\pi_B S|) \)

Multiway equi-join

- \(Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)
- What is the number of distinct \(C \) values in the join of \(R \) and \(S \)?
- Additional assumption: preservation of value sets
 - A non-join attribute does not lose values from its set of possible values
 - That is, if \(A \) is in \(R \) but not \(S \), then \(\pi_A (R \bowtie S) = \pi_A R \)
 - Certainly not true in general

Multiway equi-join (cont'd)

- \(Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)
- Start with the product of relation sizes
 - \(|R| \cdot |S| \cdot |T|\)
- Reduce the total size by the selectivity factor of each join predicate
 - \(R.B = S.B: 1/\max(|\pi_B R|, |\pi_B S|) \)
 - \(S.C = T.C: 1/\max(|\pi_C S|, |\pi_C T|) \)
 - \(|Q| \approx \frac{|R| \cdot |S| \cdot |T|}{\max(|\pi_B R|, |\pi_B S|) \cdot \max(|\pi_C S|, |\pi_C T|)}\)
Recap: cost estimation with simple stats

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Maybe okay if we overestimate or underestimate consistently
 - May lead to very nasty optimizer “hints”
 - SELECT * FROM Student WHERE GPA > 3.9;
 - SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9;
- Next: better estimation using more information (histograms)

Histograms

- Motivation
 - $|R|$, $|\pi R|$, high($R.A$), low($R.A$)
 - Too little information
 - Actual distribution of $R.A$: $(v_1, f_1), (v_2, f_2), \ldots, (v_n, f_n)$
 - f_i is frequency of v_i, or the number of times v_i appears as $R.A$
 - Too much information
- Anything in between?
 - Partition the domain of $R.A$ into buckets
 - Store a small summary of the distribution within each bucket
 - Number of buckets is the “knob” that controls the resolution

Equi-width histogram

- Divide the domain into B buckets of equal width
- Store the bucket boundaries and the sum of frequencies of the values within each bucket
Construction and maintenance

- Construction
 - If high(R.A) and low(R.A) are known, use one pass over R to construct an accurate equi-width histogram
 - Keep a running count for each bucket
 - If scanning is unacceptable, use sampling
 - Construct a histogram on R_{sample} and scale frequencies by |R|/|R_{sample}|
- Maintenance
 - Incremental maintenance: for each update on R, increment/decrement the corresponding bucket frequencies
 - Periodical recomputation: because distribution changes slowly

Using an equi-width histogram

- Q: σ_A ≤ R
 - 5 is in bucket [5, 8] (with 19 rows)
 - Assume uniform distribution within the bucket
 - |Q| ≈ 19/4 ≈ 5 \((|Q| = 1, \text{ actually}) \)
- Q: σ_A ≥ 7 and 4 ≤ 16 R
 - [7, 16] covers [9, 12] (27) and [13, 16] (13)
 - [7, 16] partially covers [5, 8] (19)
 - |Q| ≈ 19/2 + 27 + 13 ≈ 50 \((|Q| = 52, \text{ actually}) \)
- Q: R(A, B) ⊢ S(B, C)

Equi-height histogram

- Divide the domain into B buckets with roughly the same number of rows in each bucket
- Store this number and the bucket boundaries
 - Intuition: high-frequency regions are more important than low-frequency regions
Construction and maintenance

- **Construction**
 - Sampling also works

- **Maintenance**
 - Incremental maintenance
 - Merge adjacent buckets with small counts
 - Split any bucket with a large count
 - Select the median value to split
 - Need a sample of the values within this bucket to work well
 - Periodic recomputation also works

Using an equi-height histogram

- \(Q: \sigma_A = \gamma R \)
 - 5 is in bucket \([1, 7] (16)\)
 - Assume uniform distribution within the bucket
 - \(|Q| \approx 16/7 \approx 2 \) \(|Q| = 1\), actually

- \(Q: \sigma_A \geq 7 \text{ and } A \leq 16 R \)
 - \([7, 16]\) covers \([8, 9], [10, 11], [12, 16]\) (all with 16)
 - \([7, 16]\) partially covers \([1, 7]\) (16)
 - \(|Q| \approx 16/7 + 16 + 16 + 16 \approx 50 \)
 - \(|Q| = 52\), actually

- Join is similar to equi-width histogram

Histogram tricks

- Store the number of distinct values in each bucket
 - To remove the effects of the values with 0 frequency
 - These values tend to cause underestimation

- Compressed histogram
 - Store \((v_i, f_i)\) pairs explicitly if \(f_i\) is high
 - For other values, use an equi-width or equi-height histogram

- Self-tuning
 - Analyze feedback from query execution engine to refine histograms
 - Aboulnaga and Chaudhuri, *SIGMOD* 1999
More histograms

- V-optimal(V', F) histogram
 - Avoid putting very different frequencies into the same bucket
 - Partition in a way to minimize $\sum_i \text{VAR}_i$, overall, where VAR_i is the frequency variance within bucket i
- MaxDiff(V, A) histogram
 - Define area to be the product of the frequency of a value and its spread (the difference between this value and the next value with non-zero frequency)
 - Insert bucket boundaries where two adjacent areas differ by large amounts
 - A bit easier to construct than V-optimal; comparable performance
* More in Poosala et al., SIGMOD 1996

Wavelets

- Mathematical tool for hierarchical decomposition of functions and signals
- Haar wavelets: recursive pair-wise averaging and differencing at different resolutions
 - Simplest wavelet basis, easy to implement

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Averages</th>
<th>Detail coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>[2, 2, 0, 2, 3, 5, 4, 4]</td>
<td>[0, –1, –1, 0]</td>
</tr>
<tr>
<td>2</td>
<td>[2, 1, 4, 4]</td>
<td>[0, 5, 0]</td>
</tr>
<tr>
<td>1</td>
<td>[1.5, 4]</td>
<td>[0.5, 0]</td>
</tr>
<tr>
<td>0</td>
<td>[2.75]</td>
<td>[–1.25]</td>
</tr>
</tbody>
</table>

Haar wavelet decomposition: [2.75, –1.25, 0.5, 0, 0, –1, –1, 0]

Haar wavelet coefficients

- Hierarchical decomposition structure

```
+----------------+
|    2.75        |
+----------------+
|      +        |
|      -1.25     |
+----------------+
|      0.5       |
+----------------+
|      0         |
+----------------+
|    2          |
|    0          |
|    2          |
|    3          |
|    3          | 4
```

Original data
Wavelet-based histogram

- Idea: use a compact subset of wavelet coefficients to approximate the data distribution
 - Matias et al., SIGMOD 1998
 - Transform the distribution function which maps \(v_i \) to \(f_i \)

Steps

- Compute cumulative data distribution function \(C(v) \)
 - \(C(v) \) is the number of tuples with \(R.A \leq v \)
- Compute wavelet transform of \(C \)
- Coefficient thresholding: keep only the largest coefficients in absolute normalized value
 - For Haar wavelets, divide coefficients at resolution \(j \) by \(2^{j/2} \)

Using a wavelet-based histogram

- \(Q: \sigma_A > u \) and \(A \leq v, R \)
- \(|Q| = C(v) - C(u) \)
- Search the tree to reconstruct \(C(v) \) and \(C(u) \)
 - Worst case: two paths, \(O(\log N) \), where \(N \) is the size of the domain
 - If we just store \(B \) coefficients, it becomes \(O(B) \), but answers are now approximate

- What about \(Q: \sigma_A = v, R \)?

Summary of histograms

- Wavelet-based histograms are shown to work better than traditional bucket-based histograms
- The trick of using cumulative distribution for range query estimation also works for bucket-based histograms
- Trade-off: better accuracy \(\leftrightarrow \) bigger size, and higher construction and maintenance costs