Review of the bigger picture

Query optimization
- Consider a space of possible plans (Monday)
 - Rewrite logical plan to combine “blocks” as much as possible
 - Each block will then be optimized separately
 - Fewer blocks → larger plan space
- Estimate costs of plans in the search space (today)
- Search through the space for the “best” plan (next Monday)

Simple statistics
- Suppose DBMS collects the following statistics for each table R
 - Size of R: $|R|$
 - For each column A in R, the number of distinct A values: $|\pi_A R|$
 - Assumption: RA values are uniformly distributed over $\pi_A R$ (i.e., all values have the same count in R)
- Statistics are often re-computed periodically; accurate statistics are not required for estimation
Conjunctive Predicates

- **Q**: $\sigma_{A = a \land B = v} R$
- Additional assumption: $(A = a)$ and $(B = v)$ are independent
 - Example: age and gender
 - Counterexample: major and advisor

\[
|Q| \approx \left| R \right| / (|\pi_A R| \cdot |\pi_B R|)
\]
- Reduce the input size by all selectivity factors

Negated and Disjunctive Predicates

- **Q**: $\sigma_{A = a \lor B = v} R$
 - Selectivity factor of $\neg p$ is $(1 - \text{selectivity factor of } p)$

- **Q**: $\sigma_{A = a \land B = v} R$
 - Not enough information!
 - $\approx \left| R \right| \cdot (1 - 1/|\pi_A R|)$

Range Predicates

- **Q**: $\sigma_{A > v} R$
 - Additional assumption: containment of value sets
 - Every row in the "smaller" table (one with fewer distinct values for the join column) joins with some row in the other table
 - That is, if $|\pi_A R| \leq |\pi_B S|$ then $\pi_B R \subseteq \pi_B S$
 - Certainly not true in general
 - Intuition: $(A = a)$ or $(B = v)$ is equivalent to $\neg (\neg (A = a) \land \neg (B = v))$

Two-way Equi-Join

- **Q**: $R(A, B) \bowtie S(B, C) \bowtie T(C, D)$
 - Additional assumption: containment of value sets
 - Start with the product of relation sizes
 - Reduce the total size by the selectivity factor of each join predicate

Multi-table Equi-Join

- **Q**: $R(A, B) \bowtie S(B, C)$
 - Additional assumption: preservation of value sets
 - A non-join attribute does not lose values from its set of possible values
 - That is, if A is in R but not S, then $\pi_A (R \bowtie S) = \pi_A R$
 - Certainly not true in general

- **Q**: $R(A, B) \bowtie S(B, C)$
 - Not enough information!
 - Just pick, say, $|Q| \approx \left| R \right| \cdot 1/3$

- **Q**: $R(A, B) \bowtie S(B, C)$
 - In practice: sometimes the second highest and lowest are used instead
 - The highest and the lowest are often used by inexperienced database designer to represent invalid values!

Multi-table Equi-Join (cont’d)

- **Q**: $R(A, B) \bowtie S(B, C)$
 - Start with the product of relation sizes
 - Reduce the total size by the selectivity factor of each join predicate

\[
|Q| = \frac{|R| \cdot |S| \cdot |T|}{\text{selectivity factor of each join predicate}}
\]
Recap: cost estimation with simple stats

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Maybe okay if we overestimate or underestimate consistently
 - May lead to very nasty optimizer "hints"

```
SELECT * FROM Student WHERE GPA > 3.9;
SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9;
```

- Next: better estimation using more information (histograms)

Histograms

- **Motivation**
 - $|R|, |\pi_A R|, \text{high}(R.A), \text{low}(R.A)$
 - Too little information
 - Actual distribution of $R.A$:
 - $(v_1,f_1), (v_2,f_2), \ldots, (v_n,f_n)$
 - f_i is frequency of v_i or the number of times v_i appears as $R.A$
 - Too much information

- **Anything in between?**
 - Partition the domain of $R.A$ into buckets
 - Store a small summary of the distribution within each bucket
 - Number of buckets is the "knob" that controls the resolution

Equi-width histogram

- Divide the domain into B buckets of equal width
- Store the bucket boundaries and the sum of frequencies of the values within each bucket

Using an equi-width histogram

- Q: $\sigma_A = \sum R$
 - 5 is in bucket $[5, 8]$ (with 19 rows)
 - Assume uniform distribution within the bucket
 - $|Q| \approx 19/4 \approx 5$ ($|Q| = 1$, actually)

- Q: $\sigma_A \geq 7$ and $t \leq 16$
 - $[7, 16]$ covers $[9, 12]$ (27) and $[13, 16]$ (13)
 - $[7, 16]$ partially covers $[5, 8]$ (19)
 - $|Q| \approx 19/2 + 27 + 13 \approx 50$ ($|Q| = 52$, actually)

- Q: $R(A, B) \bowtie S(B, C)$
 - Consider only joining buckets in histograms for $R.B$ and $S.B$
 - Rows in other buckets do not join
 - Within the joining buckets, use simple rules

Equi-height histogram

- Divide the domain into B buckets with roughly the same number of rows in each bucket
- Store this number and the bucket boundaries
- Intuition: high frequencies are more important than low frequencies
Construction and maintenance

- **Construction**
 - Sort all \(R.A\) values, and then take equally spaced splits
 - Example: \(1 2 2 3 4 7 8 9 10 10 10 11 12 12 14 16 \ldots\)
- **Maintenance**
 - Incremental maintenance
 - Merge adjacent buckets with small counts
 - Split any bucket with a large count
 - Select the median value to split
 - Need a sample of the values within this bucket to work well
 - Periodic recomputation also works

Using an equi-height histogram

- **Query:** \(Q: \sigma_A = \frac{1}{R}\)
 - 5 is in bucket \([1, 7]\) (16)
 - Assume uniform distribution within the bucket
 - \(|Q| \approx 16/7 \approx 2\) \(\Rightarrow |Q| = 1\), actually
- **Query:** \(Q: \sigma_A \geq 7\) and \(A \leq 16\)
 - \([7, 16]\) covers \([8, 9]\), \([10, 11]\), \([12, 16]\) (all with 16)
 - \([7, 16]\) partially covers \([1, 7]\) (16)
 - \(|Q| \approx 16/7 + 16 + 16 + 16 \approx 50\)
 - \(|Q| = 52\), actually
 - Join similar to equi-width histogram

Histogram tricks

- **Store the number of distinct values in each bucket**
 - To remove the effects of the values with 0 frequency
 - These values tend to cause underestimation
- **Compressed histogram**
 - Store \((v, f)\) pairs explicitly if \(f\) is high
 - For other values, use an equi-width or equi-height histogram
- **Self-tuning**
 - Analyze feedback from query execution engine to refine histograms
 - Aboulnaga and Chaudhuri, SIGMOD 1999

More histograms

- **V-optimal(\(V, F\)) histogram**
 - Avoid putting very different frequencies into the same bucket
 - Partition in a way to minimize \(\sum_i VAR_i\) overall, where \(VAR_i\) is the frequency variance within bucket \(i\)
- **MaxDiff(\(V, A\)) histogram**
 - Define area to be the product of the frequency of a value and its spread (the difference between this value and the next value with non-zero frequency)
 - Insert bucket boundaries where two adjacent areas differ by large amounts
 - A bit easier to construct than V-optimal; comparable performance
 - More in Poosala et al., SIGMOD 1996

Wavelets

- **Mathematical tool for hierarchical decomposition of functions and signals**
- **Haar wavelets:** recursive pair-wise averaging and differencing at different resolutions
 - Simplest wavelet basis, easy to implement

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Averages</th>
<th>Detail coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>[2, 2, 0, 2, 3, 5, 4]</td>
<td>[0, –1, –1, 0]</td>
</tr>
<tr>
<td>2</td>
<td>[2, 1, 4, 4]</td>
<td>[0.5, 0]</td>
</tr>
<tr>
<td>1</td>
<td>[1.5, 4]</td>
<td>[0.5, 0]</td>
</tr>
<tr>
<td>0</td>
<td>[2.75]</td>
<td>[–1.25]</td>
</tr>
</tbody>
</table>

Haar wavelet decomposition: \([2.75, –1.25, 0.5, 0, 0, –1, –1, 0]\)

Haar wavelet coefficients

- **Hierarchical decomposition structure**

![Haar wavelet coefficients diagram]
Wavelet-based histogram

- Idea: use a compact subset of wavelet coefficients to approximate the data distribution
 - Matias et al., SIGMOD 1998
 - Transform the distribution function which maps v_i to f_i

- Steps
 - Compute cumulative data distribution function $C(v)$
 - $C(v)$ is the number of tuples with $R.A \leq v$
 - Compute wavelet transform of C
 - Coefficient thresholding: keep only the largest coefficients in absolute normalized value
 - For Haar wavelets, divide coefficients at resolution j by $2^{j/2}$

Using a wavelet-based histogram

- $Q: \sigma_A > v$ and $A \leq v$ R
- $|Q| = C(v) - C(u)$
- Search the tree to reconstruct $C(v)$ and $C(u)$
 - Worst case: two paths, $O(\log N)$, where N is the size of the domain
 - If we just store B coefficients, it becomes $O(B)$, but answers are now approximate
- What about $Q: \sigma_A = v$ R?
 - Same as $\sigma_A > \text{predecessor}(v)$ and $A \leq v$ R

Summary of histograms

- Wavelet-based histograms are shown to work better than traditional bucket-based histograms
- The trick of using cumulative distribution for range query estimation also works for bucket-based histograms
- Trade-off: better accuracy \leftrightarrow bigger size, and higher construction and maintenance costs