Today’s topics

Programming
 Recursion
 Invariants
Digital Intellectual Property Issues

Reading
 Brookshear, Chapter 6
 Richard Stallman, GNU Manifesto, 1993
 Microsoft Corp., "Some Questions Every Business Should Ask About the GNU General Public License (GPL)", 2001

Solving Problems Recursively

- Recursion is an indispensable tool in a programmer’s toolkit
 - Allows many complex problems to be solved simply
 - Elegance and understanding in code often leads to better programs: easier to modify, extend, verify
 - Sometimes recursion isn’t appropriate, when it’s bad it can be very bad—every tool requires knowledge and experience in how to use it

- The basic idea is to get help solving a problem from coworkers (clones) who work and act like you do
 - Ask clone to solve a simpler but similar problem
 - Use clone’s result to put together your answer
- Need both concepts: call on the clone and use the result

Fundamentals of Recursion

- **Base case** (aka exit case)
 - Simple case that can be solved with no further computation
 - Does not make a recursive call
- **Reduction step** (aka Inductive hypothesis)
 - Reduce the problem to another smaller one of the same structure
 - Make a recursive call, with some parameter or other measure that decreases or moves towards the base case
 - Ensure that sequence of calls eventually reaches the base case
 - “Measure” can be tricky, but usually it’s straightforward
- **The Leap of Faith!**
 - If it works for the reduction step is correct and there is proper handling of the base case, the recursion is correct.
- What row are you in?

Classic examples of recursion

- For some reason, computer science uses these examples:
 - Factorial: we can use a loop or recursion, is this an issue?
 - Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, …
 - $F(n) = F(n-1) + F(n-2)$, why isn’t this enough? What’s needed?
 - Classic example of bad recursion, to compute $F(6)$, the sixth Fibonacci number, we must compute $F(5)$ and $F(4)$. What do we do to compute $F(5)$? Why is this a problem?
 - Towers of Hanoi
 - N disks on one of three pegs, transfer all disks to another peg, never put a disk on a smaller one, only on larger
 - Every solution takes “forever” when N, number of disks, is large
 - Reversing strings
 - Append first character after the rest is reversed
Exponentiation

- Computing x^n means multiplying n numbers (or does it?)
 - What's the easiest value of n to compute x^n?
 - If you want to multiply only once, what can you ask a clone?

```java
double Power(double x, int n)
// post: returns $x^n$
{
  if (n == 0)
  {
    return 1.0;
  }
  return x * Power(x, n-1);
}
```

- What about an iterative version?

Faster exponentiation

- How many recursive calls are made to compute 2^{1024}?
 - How many multiplies on each call? Is this better?

```java
double Power(double x, int n)
// post: returns $x^n$
{
  if (n == 0)
  {
    return 1.0;
  }
  double semi = Power(x, n/2);
  if (n % 2 == 0)
  {
    return semi*semi;
  }
  return x * semi * semi;
}
```

- What about an iterative version of this function?

Loop Invariants

- Want to reason about the correctness of a proposed iterative solution
- Loop invariants provide a means to effectively about the correctness of code

```java
while !done do
{
  // what is true at every step
  // Update/iterate
  // maintain invariant
}
```

Bean Can game

- Can contains N black beans and M white beans initially
- Emptied according the following repeated process
 - Select two beans from the can
 - If the beans are:
 - *same color*: put a black bean back in the can
 - *different colors*: put a white bean back in the can
 - Player who chooses the color of the remaining bean wins the game
- Analyze the link between the initial state and the final state
- Identify a property that is preserved as beans are removed from the can
 - *Invariant* that characterizes the removal process
What is digital?

- What’s the difference between
 - Rolex and Timex?
 - VCR tape and DVD?

- How is ripping to a mp3 different from recording to a tape?
 - Reproduction: immediate and future
 - Distribution
 - Modification

- Why do digital media present new challenges from analog media?
 - Is copyright infringement new?

Copyright

- US Constitution (Article I, Section 8, Clause 8): “To promote the Progress of Science and useful Arts”

- What can you copyright?
 - Fixed, tangible medium of expression with a modicum of originality

- How do you copyright?
 - Don’t need anything. Registration necessary for copyright infringement suits
 - Authors given limited monopoly so they will disclose to public
 - Concessions
 1. Fair use
 2. First sale
 3. Limited Time

- Evolving Bargain: Copyright holder may profit from works and public has access and can build upon them
- What would happen if information could only be shared if the owner provided permission?

Fair use

- Use copyrighted works without permission if the use does not unduly interfere with the copyright owner’s market for a work
- Include personal, noncommercial uses
- 4 prong test
 1. Purpose and character of use (commercial vs. non-profit or educational)
 2. Nature of copyrighted work
 3. Amount and substantiality of the portion used
 4. Effect of the copying upon market
- Example: using a VCR to time-shift a broadcast program
- Reverse engineering
 - OK when extracting unprotected elements
 - Connectix Virtual PlayStation

Digital rights management

- Idea: copying is hard to control, so make the copying process itself difficult
 - Restrict the use of digital files in order to protect interest of copyright holders
 - Control file access
 - Implemented in operating system, program software, or in the actual hardware of a device

- Digital watermarking
 - Make information so that unauthorized copying can be detected

- Serial Copy Management System (Audio Home Recording Act 92)
- Dystopian and utopian results?
- Privacy issues?
Important papers

- National Information Infrastructure White Paper 1995
 1. Copyright owners given exclusive rights over “transmission” of information not just copying
 2. Eliminate first-sale doctrine for digital works
 3. Criminalize tampering with copyright protection or identification mechanisms
 > Controversial and bills to implement recommendations were not passed, until...
- Digital Millenium Copyright Act 1998
 - Encourages use of technological protections to facilitate a pay-per-view/use system
 - Copyright used to regulate multiplication and distribution of works but how about consumption?
 - Civil and criminal penalties for circumventing copyright protection systems

Copyrights

- Copyright Term Extension Act 1998
 - Free Mickey Mouse! (challenged in Supreme Court 2003)
 - Retroactive copyright extension of 20 years
 - Breyer: “effect ... is to make the copyright term not limited, but virtually perpetual”
 - Over the last 40 years, Congress has lengthened copyright durations 11 times
 - Copyright term length
 - 95 years for corporations
 - 70 years after death for individuals
- Other forms of exclusive rights in information
 - Patents: inventions that others cannot use
 - Trademark: differentiates between different sources of products
 - Trade secret: pseudo-property right to penalize those who disclose information to unauthorized persons

Questions

- Is copyright infringement stealing?
- What are the differences between writing code and writing books in terms of licensing?
- Discuss the legality of peer-to-peer sharing with respect to the four prongs of determining fair use
- Eben Moglen:
 > If you could feed everyone by pressing a button to create lambchops (for free), is there a moral reason to have starving people?
 > If everything has zero marginal cost and can be given to everyone everywhere why is it ever moral to exclude anyone from anything?

Consequences

- Scientific research
 - Secure Digital Music Initiative & Prof. Edward Felton
 - Adobe & Dmitry Skylarov
- Fair Use
 - Copy-protected CDs
 - DeCSS and DVD Copy Plus
- Innovation and competition
 - Sony vs. Connectix and “Mod Chip” makers
 - Apple & Other World Computing
Patents

- **Why patents are powerful?**
 - Right to exclude others from “practicing the invention”
- **Currently operating under Patent Act of 1975**
 - 20 year term
- **Patent and Trademark Office looks at 4 criteria**
 1. Is proposed invention patentable?
 2. Utility
 3. Novelty
 4. Non-obviousness
- **Software patents**
 - Only recently have patents been granted for software or business methods
 - Controversial patent: Amazon.com’s One-Click

Types of software

- **Software Licenses**
 - Public domain
 - Free
 - Open Source
 - Copylefted
 - Semi-free
 - Commercial
- **Proprietary (closed) software**
 - Freeware
 - Shareware
 - Adware
 - Spyware
- **Commercial**
 - Academic licenses

Open source

- **Commercial software license schemes**
 - Microsoft’s Embrace and Extend
 - What’s a EULA?
- **Rights**
 - Make copies of the program and distribute them
 - Access to the software’s source code
 - Make improvements to the program
- **Results**
 - All contributors at same relative level
 - Lots of competition in distribution or support
 - Why does it work?
- **Free Software Foundation** formed in 1984
 - GNU General Public License (Copyleft)
 - Seminal work produced (emacs, gnu compiler)
 - Spawned different licenses like the [Open Source Definition](#)

Sources of material

- **Organizations**
 - The Electronic Frontier Foundation
 - Center for Democracy and Technology
- **Media and discussion**
 - Wired Magazine
 - Slashdot
- **Databases of information and laws**
 - Lexis/Nexis
 - Thomas
- **Social issues in Computer Science**
 - Computer Professionals for Social Responsibility