Announcements (January 18)

- Homework #1 will be assigned on Thursday
- Reading assignment for this week
 - Posted on course Web page
 - Review due on Thursday night

Relational data model

- A database is a collection of relations (or tables)
- Each relation has a list of attributes (or columns)
 - Set-valued attributes not allowed
- Each attribute has a domain (or type)
- Each relation contains a set of tuples (or rows)
 - Duplicates not allowed

- Simplicity is a virtue!
This slide contains information on database relations and the distinction between schema and instance, along with examples and explanations.

Example

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID</td>
<td>Name</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
</tr>
</tbody>
</table>

Ordering of rows doesn’t matter (even though the output is always in some order).

<table>
<thead>
<tr>
<th>Enroll</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID</td>
</tr>
<tr>
<td>142</td>
</tr>
<tr>
<td>142</td>
</tr>
<tr>
<td>123</td>
</tr>
<tr>
<td>857</td>
</tr>
<tr>
<td>857</td>
</tr>
<tr>
<td>456</td>
</tr>
</tbody>
</table>

Why did Codd call them "relations"?

Each n-tuple relates n elements from n domains, precisely in the mathematical sense of a "relation".

Schema versus instance

- **Schema (metadata)**
 - Specification of how data is to be structured logically
 - Defined at set-up
 - Rarely changes

- **Instance**
 - Content
 - Changes rapidly, but always conforms to the schema

- Compare to type and object of type in a programming language

Example

- **Schema**
 - Student (SID integer, name string, age integer, GPA float)
 - Course (CID string, title string)
 - Enroll (SID integer, CID integer)

- **Instance**
 - `{ (142, Bart, 10, 2.3), (123, Milhouse, 10, 3.1), ... }
 - `{ (CPS216, Advanced Database Systems), ... }`
Relational algebra operators

- Core set of operators:
 - Selection, projection, cross product, union, difference, and renaming
- Additional, derived operators:
 - Join, natural join, intersection, etc.

Selection

- Input: a table \(R \)
- Notation: \(\sigma_p(R) \)
 - \(p \) is called a selection condition/predicate
- Purpose: filter rows according to some criteria
- Output: same columns as \(R \), but only rows of \(R \) that satisfy \(p \)

Selection example

- Students with GPA higher than 3.0
 - \(\sigma_{\text{GPA} > 3.0}(\text{Student}) \)

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>2.3</td>
</tr>
</tbody>
</table>
More on selection

- Selection predicate in general can include any column of R, constants, comparisons such as $=$, \leq, etc., and Boolean connectives \land, \lor, and \neg
- Example: straight A students under 18 or over 21
 \[\sigma_{\text{GPA} \geq 4.0 \land \text{age} < 18 \lor \text{age} > 21} (\text{Student}) \]
- But you must be able to evaluate the predicate over a single row
 - Example: student with the highest GPA
 \[\sigma_{\text{GPA} = \text{max(GPA)}} (\text{Student}) \]

Projection

- Input: a table R
- Notation: $\pi_L (R)$
 - L is a list of columns in R
- Purpose: select columns to output
- Output: same rows, but only the columns in L

Projection example

- ID’s and names of all students
 \[\pi_{\text{SID}, \text{name}} (\text{Student}) \]
More on projection

- Duplicate output rows must be removed
 - Example: student ages

$$\pi_{\text{age}}(\text{Student})$$

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Cross product

- Input: two tables \(R \) and \(S \)
- Notation: \(R \times S \)
- Purpose: pairs rows from two tables
- Output: for each row \(r \) in \(R \) and each row \(s \) in \(S \)
 - output a row \(rs \) (concatenation of \(r \) and \(s \))

Cross product example

- \(\text{Student} \times \text{Enroll} \)
A note on column ordering

- The ordering of columns in a table is considered unimportant (as is the ordering of rows).

<table>
<thead>
<tr>
<th>SID</th>
<th>Name</th>
<th>Age</th>
<th>GPA</th>
<th>CID</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
<td>CPS216</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
<td>CPS214</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
<td>CPS216</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
<td>CPS216</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
<td>CPS214</td>
</tr>
</tbody>
</table>

- That means cross product is commutative, i.e., $R \times S = S \times R$ for any R and S.

Derived operator: join

- Input: two tables R and S
- Notation: $R \bowtie_p S$
 - p is called a join condition/predicate
- Purpose: relate rows from two tables according to some criteria
- Output: for each row r in R and each row s in S, output a row rs if r and s satisfy p
- Shorthand for $\sigma_p (R \times S)$

Join example

- Info about students, plus CID's of their courses

Use table column to disambiguate columns if necessary.
Derived operator: natural join

- **Input:** two tables R and S
- **Notation:** $R \bowtie S$
- **Purpose:** relate rows from two tables, and
 - Enforce equality on all common attributes
 - Eliminate one copy of common attributes
- **Shorthand for $\pi_L(R \bowtie p S)$**
 - L is the union of all attributes from R and S, with duplicates removed
 - p equates all attributes common to R and S

Natural join example

- $\text{Student} \bowtie \text{Enroll} = \pi_L((\text{Student} \bowtie \text{Enroll})))$
 - $L = \text{Student.ID, name, age, GPA, CID}$
 - $p = \text{Student.SID} = \text{Enroll.SID}$

Union

- **Input:** two tables R and S
- **Notation:** $R \cup S$
 - R and S must have identical schema
- **Output:**
 - Has the same schema as R and S
 - Contains all rows in R and all rows in S, with duplicates eliminated
Difference

- **Input:** two tables R and S
- **Notation:** $R - S$
 - R and S must have identical schema
- **Output:**
 - Has the same schema as R and S
 - Contains all rows in R that are not found in S

Derived operator: intersection

- **Input:** two tables R and S
- **Notation:** $R \cap S$
 - R and S must have identical schema
- **Output:**
 - Has the same schema as R and S
 - Contains all rows that are in both R and S

Renaming

- **Input:** a table R
- **Notation:** $\rho_S (R)$, or $\rho_{A_1, A_2, \ldots} (R)$
- **Purpose:** rename a table and/or its columns
- **Output:** a renamed table with the same rows as R
- **Used to**
 - Avoid confusion caused by identical column names
 - Create identical columns names for natural joins
Renaming example

- SID’s of students who take at least two courses
- \(Enroll \supseteq_1 Enroll \)
- \(\pi_{SID} (Enroll \supseteq_1 Enroll) \)
- \(\rho_{Enroll(\text{SID}_1, \text{CID}_1)} \)
- \(\rho_{Enroll(\text{SID}_2, \text{CID}_2)} \)

Summary of core operators

- Selection: \(\sigma_p (R) \)
- Projection: \(\pi_L (R) \)
- Cross product: \(R \times S \)
- Union: \(R \cup S \)
- Difference: \(R - S \)
- Renaming: \(\rho_{A_1, A_2, \ldots} (R) \)
 - Does not really add to processing power

Summary of derived operators

- Join: \(R \bowtie_2 S \)
- Natural join: \(R \bowtie S \)
- Intersection: \(R \cap S \)
- Many more
 - Semijoin, anti-semijoin, quotient, …
An exercise

- CID’s of the courses that Lisa is NOT taking

A trickier exercise

- SID’s of students who take exactly one course

Monotone operators

- If some old output rows may be removed
 - Then the operator is non-monotone
- Otherwise the operator is monotone
 - That is, old output rows remain “correct” when more rows are added to the input
 - Formally, \(R \subseteq R' \) implies \(\text{RelOp}(R) \subseteq \text{RelOp}(R') \)
Classification of relational operators

- Selection: $\sigma_p(R)$
- Projection: $\pi_L(R)$
- Cross product: $R \times S$
- Join: $R \bowtie S$
- Natural join: $R \bowtie S$
- Union: $R \cup S$
- Difference: $R - S$
- Intersection: $R \cap S$

Why is “−” needed for “exactly one”?

- Composition of monotone operators produces a monotone query
 - Old output rows remain “correct” when more rows are added to the input

Why do we need core operator X?

- Difference
- Projection
- Cross product
- Union
- Selection?
Why is r.a. a good query language?

- **Declarative?**
 - Yes, compared with older languages like CODASYL
 - Though operators still feel “procedural”

- **Simple**
 - A small set of core operators who semantics are easy to grasp

- **Complete?**
 - With respect to what?

Relational calculus

- \{ e.SID | e ∈ Enroll \ ∧
 \quad \neg \exists e' ∈ Enroll: e'.SID = e.SID ∧ e'.CID ≠ e.CID \} or
 \{ e.SID | e ∈ Enroll \ ∧
 \quad \forall e' ∈ Enroll: e'.SID ≠ e.SID ∨ e'.CID = e.CID \}

- Relational algebra = “safe” relational calculus
 - Every query expressible as a safe relational calculus query is also expressible as a relational algebra query
 - And vice versa

- Example of an unsafe relational calculus query
 - \{ e.name | ¬(e ∈ Student) \}
 - Cannot evaluate this query just by looking at the database

Turing machine?

- Relational algebra has no recursion
 - Example of something not expressible in relational algebra: Given relation Parent(\text{parent}, \text{child}), who are Bart’s ancestors?

- Why not recursion?
 - Optimization becomes undecidable
 - You can always implement it at the application level
 - Recursion is added to SQL nevertheless