Relational Model & Algebra

CPS 216
Advanced Database Systems

Announcements (January 18)

- Homework #1 will be assigned on Thursday
- Reading assignment for this week
 - Posted on course Web page
 - Review due on Thursday night

Relational data model

- A database is a collection of relations (or tables)
- Each relation has a list of attributes (or columns)
 - Set-valued attributes not allowed
- Each attribute has a domain (or type)
- Each relation contains a set of tuples (or rows)
 - Duplicates not allowed
- Simplicity is a virtue!

Example

<table>
<thead>
<tr>
<th>SID</th>
<th>Name</th>
<th>Age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>2.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CID</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPS216</td>
<td>Advanced Database Systems</td>
</tr>
<tr>
<td>CPS230</td>
<td>Analysis of Algorithms</td>
</tr>
<tr>
<td>CPS214</td>
<td>Computer Networks</td>
</tr>
</tbody>
</table>

Ordering of rows doesn’t matter (even though the output is always in some order)

Why did Codd call them “relations”?
Each n-tuple relates n elements from n domains, precisely in the mathematical sense of a “relation”

Schema versus instance

- Schema (metadata)
 - Specification of how data is to be structured logically
 - Defined at set-up
 - Rarely changes
- Instance
 - Content
 - Changes rapidly, but always conforms to the schema
- Compare to type and object of type in a programming language

Example

- Schema
 - Student (SID integer, name string, age integer, GPA float)
 - Course (CID string, title string)
 - Enroll (SID integer, CID integer)

- Instance
 - { {142, Bart, 10, 2.3}, {123, Milhouse, 10, 3.1} }
 - { {CPS216, Advanced Database Systems} }
 - { {142, CPS216}, {142, CPS214} }
Relational algebra operators

- Core set of operators:
 - Selection, projection, cross product, union, difference, and renaming
- Additional, derived operators:
 - Join, natural join, intersection, etc.

Selection
- Input: a table R
- Notation: $\sigma_p (R)$
 - p is called a selection condition/predicate
- Purpose: filter rows according to some criteria
- Output: same columns as R, but only rows of R that satisfy p

Selection example
- Students with GPA higher than 3.0
 $\sigma_{\text{GPA} > 3.0} (\text{Student})$

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Selection example
- Students with GPA higher than 3.0
 $\sigma_{\text{GPA} > 3.0} (\text{Student})$

Projection
- Input: a table R
- Notation: $\pi_L (R)$
 - L is a list of columns in R
- Purpose: select columns to output
- Output: same rows, but only the columns in L

Projection example
- ID’s and names of all students
 $\pi_{\text{SID}, \text{name}} (\text{Student})$
More on projection

- Duplicate output rows must be removed
 - Example: student ages

\[\pi_{\text{name, age}} (\text{Student}) \]

\begin{tabular}{l|l|l}
SID & name & age \\
--- & --- & --- \\
142 & Bart & 10 \\
123 & Milhouse & 10 \\
857 & Lisa & 8 \\
456 & Ralph & 8 \\
\end{tabular}

Cross product

- Input: two tables \(R \) and \(S \)
- Notation: \(R \times S \)
- Purpose: pairs rows from two tables
- Output: for each row \(r \) in \(R \) and each row \(s \) in \(S \), output a row \(rs \) (concatenation of \(r \) and \(s \))

\[\text{SID name age GPA} \]
\[\hline \]
\[142 \text{ Bart 10 2.3} \]
\[123 \text{ Milhouse 10 3.1} \]
\[857 \text{ Lisa 8 4.3} \]
\[456 \text{ Ralph 8 2.3} \]

A note on column ordering

- The ordering of columns in a table is considered unimportant (as is the ordering of rows)

\[\text{SID name GPA SID CID} \]
\[\hline \]
\[142 \text{ Bart 10 2.3 CPS216 CPS216} \]
\[142 \text{ Bart 10 2.3 CPS214 CPS214} \]
\[857 \text{ Lisa 8 4.3 CPS216 CPS216} \]
\[857 \text{ Lisa 8 4.3 CPS214 CPS214} \]
\[456 \text{ Ralph 8 2.3 CPS216 CPS216} \]
\[456 \text{ Ralph 8 2.3 CPS214 CPS214} \]

Derived operator: join

- Input: two tables \(R \) and \(S \)
- Notation: \(R \bowtie_p S \)
 - \(p \) is called a join condition/predicate
- Purpose: relate rows from two tables according to some criteria
- Output: for each row \(r \) in \(R \) and each row \(s \) in \(S \), output a row \(rs \) if \(r \) and \(s \) satisfy \(p \)
- Shorthand for \(\sigma_p (R \times S) \)

Join example

- Info about students, plus CID’s of their courses

\[\text{Student} \bowtie_{\text{Student.SID} = \text{Enroll.SID}} \text{ Enroll} \]

\[\text{SID name age GPA SID CID} \]
\[\hline \]
\[142 \text{ Bart 10 2.3 CPS216 CPS216} \]
\[142 \text{ Bart 10 2.3 CPS214 CPS214} \]
\[123 \text{ Milhouse 10 1.1 CPS214 CPS214} \]
\[123 \text{ Milhouse 10 1.1 CPS216 CPS216} \]
\[123 \text{ Milhouse 10 1.1 CPS214 CPS214} \]
\[123 \text{ Milhouse 10 1.1 CPS216 CPS216} \]
Derived operator: natural join

- Input: two tables \(R \) and \(S \)
- Notation: \(R \bowtie S \)
- Purpose: relate rows from two tables, and
 - Enforce equality on all common attributes
 - Eliminate one copy of common attributes
- Shorthand for \(\pi_L(R \bowtie S) \)
 - \(L \) is the union of all attributes from \(R \) and \(S \), with duplicates removed
 - \(\rho \) equates all attributes common to \(R \) and \(S \)

Natural join example

Student \(\bowtie \) Enroll = \(\pi_L(\text{Student} \bowtie \text{Enroll}) = \pi_{\text{Student.IID, name, age, GPA, CID}}(\text{Student} \bowtie \text{Enroll}) \)

<table>
<thead>
<tr>
<th></th>
<th>name</th>
<th>age</th>
<th>GPA</th>
<th>CID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
<td>CPS216</td>
</tr>
<tr>
<td>2</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
<td>CPS214</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Union

- Input: two tables \(R \) and \(S \)
- Notation: \(R \cup S \)
- \(R \) and \(S \) must have identical schema
- Output:
 - Has the same schema as \(R \) and \(S \)
 - Contains all rows in \(R \) and all rows in \(S \), with duplicates eliminated

Difference

- Input: two tables \(R \) and \(S \)
- Notation: \(R - S \)
- \(R \) and \(S \) must have identical schema
- Output:
 - Has the same schema as \(R \) and \(S \)
 - Contains all rows in \(R \) that are not found in \(S \)

Derived operator: intersection

- Input: two tables \(R \) and \(S \)
- Notation: \(R \cap S \)
- \(R \) and \(S \) must have identical schema
- Output:
 - Has the same schema as \(R \) and \(S \)
 - Contains all rows that are in both \(R \) and \(S \)
- Shorthand for \(R - (R - S) \)
- Also equivalent to \(S - (S - R) \)
- And to \(R \bowtie S \)

Renaming

- Input: a table \(R \)
- Notation: \(\rho_{\rho_{S}}(R) \), or \(\rho_{S}(S_{1}, S_{2}, \ldots)(R) \)
- Purpose: rename a table and/or its columns
- Output: a renamed table with the same rows as \(R \)
- Used to
 - Avoid confusion caused by identical column names
 - Create identical columns names for natural joins
Renaming example

- SID’s of students who take at least two courses
 \[\pi_{\text{SID}}(\text{Enroll} \triangleright\triangleright_{2} \text{Enroll}) \]
 \[\rho_{\text{Enroll}}(\text{SID}_1, \text{CID}_1) \]
 \[\rho_{\text{Enroll}}(\text{SID}_2, \text{CID}_2) \]

Summary of core operators

- Selection: \(\sigma_{p}(R) \)
- Projection: \(\pi_{L}(R) \)
- Cross product: \(R \times S \)
- Union: \(R \cup S \)
- Difference: \(R - S \)
- Renaming: \(\rho_{A_1, A_2, \ldots} (R) \)
 - Does not really add to processing power

Summary of derived operators

- Join: \(R \bowtie S \)
- Natural join: \(R \bowtie S \)
- Intersection: \(R \cap S \)
- Many more
 - Semijoin, anti-semijoin, quotient, ...

An exercise

- CID’s of the courses that Lisa is NOT taking
 \[\pi_{\text{CID}}(\text{Course}) \]
 \[\sigma_{\text{name} = \text{"Lisa"}}(\text{Student}) \]

A trickier exercise

- SID’s of students who take exactly one course
 - Those who take at least one course
 - Those who take at least two courses
 - Take the difference?
 \[\pi_{\text{SID}}(\text{Enroll}) \]
 \[\rho_{\text{Enroll}}(\text{SID}_1, \text{CID}_1) \]
 \[\rho_{\text{Enroll}}(\text{SID}_2, \text{CID}_2) \]

Monotone operators

- If some old output rows may be removed
 - Then the operator is non-monotone
- Otherwise the operator is monotone
 - That is, old output rows remain “correct” when more rows are added to the input
 - Formally, \(R \subseteq R' \) implies \(\text{RelOp}(R) \subseteq \text{RelOp}(R') \)
Classification of relational operators

- Selection: $\sigma_p(R)$ Monotone
- Projection: $\pi_L(R)$ Monotone
- Cross product: $R \times S$ Monotone
- Join: $R \bowtie S$ Monotone
- Natural join: $R \bowtie S$ Monotone
- Difference: $R - S$ Non-monotone (not w.r.t. S)
- Intersection: $R \cap S$ Monotone

Why is “−” needed for “exactly one”?

- Composition of monotone operators produces a monotone query
 - Old output rows remain “correct” when more rows are added to the input
- Exactly-one query is non-monotone
 - Say Nelson is currently taking only CPS216
 - Add another record to Enroll: Nelson takes CPS214 too
 - Nelson is no longer in the answer
 - So it must use difference!

Why do we need core operator X?

- Difference
 - The only non-monotone operator
- Projection
 - The only operator that removes columns
- Cross product
 - The only operator that adds columns
- Union
 - The only operator that allows you to add rows?
 - A more rigorous proof?
- Selection? 🤔

Why is r.a. a good query language?

- Declarative?
 - Yes, compared with older languages like CODASYL
 - Though operators still feel “procedural”
- Simple
 - A small set of core operators who semantics are easy to grasp
- Complete?
 - With respect to what?

Relational calculus

- $\{ e.SID \mid e \in Enroll \land \neg \exists e' \in Enroll: e'.SID = e.SID \land e'.CID \neq e.CID \}$ or
 - $\{ e.SID \mid e \in Enroll \land (\forall e' \in Enroll: e'.SID \neq e.SID \lor e'.CID = e.CID) \}$
- Relational algebra = “safe” relational calculus
 - Every query expressible as a safe relational calculus query is also expressible as a relational algebra query
 - And vice versa
- Example of an unsafe relational calculus query
 - $\{ e.name \mid \neg \exists e \in Student \}$
 - Cannot evaluate this query just by looking at the database

Turing machine?

- Relational algebra has no recursion
 - Example of something not expressible in relational algebra: Given relation Parent(parent, child), who are Barr’s ancestors?
- Why not recursion?
 - Optimization becomes undecidable
 - You can always implement it at the application level
 - Recursion is added to SQL nevertheless