Relational Database Design

CPS 216
Advanced Database Systems

Announcements (January 20)
- Review for Codd paper due tonight via email
 - Follow instructions on course Web site
- Reading assignment for next week (Ailamaki et al., VLDB 2001) has been posted
 - Due next Wednesday night
- Homework #1 assigned today
 - Expect an email regarding your DB2 account today
 - Due February 8 (in 2 ½ weeks)
- Course project will be assigned next week

Database (schema) design
- Understand the real-world domain being modeled
- Specify it using a database design model
 - Design models are especially convenient for schema design, but are not necessarily implemented by DBMS
 - Popular ones include
 - Entity/Relationship (E/R) model
 - Object Definition Language (ODL)
- Translate the design to the data model of DBMS
 - Relational, XML, object-oriented, etc.
- Apply database design theory to check the design
- Create DBMS schema

Entity-relationship (E/R) model
- Historically very popular
 - Primarily a design model; not implemented by any major DBMS nowadays
- Can think of as a “watered-down” object-oriented design model
- E/R diagrams represent designs

Entity: a “thing,” like a record or an object
Entity set (rectangle): a collection of things of the same type, like a relation of tuples or a class of objects
Relationship: an association among two or more entities
Relationship set (diamond): a set of relationships of the same type; an association among two or more entity sets
Attributes (ovals): properties of entities or relationships, like attributes of tuples or objects

ODL (Object Definition Language)
- Standardized by ODMG (Object Data Management Group)
 - Comes with a declarative query language OQL (Object Query Language)
 - Implemented by OODBMS (Object-Oriented DataBase Management Systems)
- Object oriented
- Based on C++ syntax
- Class declarations represent designs
ODL example

class Student {
 attribute integer SID;
 attribute string name;
 relationship Set<Course> enrolledIn inverse Course::students;
};
class Course {
 attribute string CID;
 attribute string title;
 relationship Set<Student> students inverse Student::enrolledIn;
};

Easy to map them to C++ classes
• ODL attributes correspond to attributes of objects; complex types are allowed
• ODL relationships can be mapped to pointers to other objects (e.g., Set<Course> → set of pointers to objects of Course class)

Not covered in this lecture
• E/R and ODL design
• Translating E/R and ODL designs into relational designs
• Reference book (GMUW) has all the details
• Next: relational design theory

Relational model: review

A database is a collection of relations (or tables)
• Each relation has a list of attributes (or columns)
• Each attribute has a domain (or type)
• Each relation contains a set of tuples (or rows)

Keys

A set of attributes K is a key for a relation R if
• In no instance of R will two different tuples agree on all attributes of K
 • That is, K is a "tuple identifier"
• No proper subset of K satisfies the above condition
 • That is, K is minimal
• Example: Student (SID, name, age, GPA)
 • SID is a key of Student
 • (SID, name) is not a key (not minimal)

Schema vs. data

Student

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>114</td>
<td>Bart</td>
<td>10</td>
<td>3.3</td>
</tr>
<tr>
<td>116</td>
<td>Milhouse</td>
<td>9</td>
<td>4.3</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Is name a key of Student?
• Yes? Seems reasonable for this instance
• No! Student names are not unique in general
• Key declarations are part of the schema

More examples of keys

• Enroll (SID, CID)
 • (SID, CID)
• Address (street_address, city, state, zip)
 • (street_address, city, state)
 • (street_address, zip)
• Course (CID, title, room, day_of_week, begin_time, end_time)
 • (CID, day_of_week, begin_time, end_time)
 • (CID, day_of_week, end_time)
 • (room, day_of_week, begin_time)
 • (room, day_of_week, end_time)
• Not a good design, and we will see why later
Usage of keys

- More constraints on data, fewer mistakes
- Look up a row by its key value
 - Many selection conditions are “key = value”
- "Pointers"
 - Example: `Enroll (SID, CID)`
 - `SID` is a key of `Student`
 - `CID` is a key of `Course`
 - An `Enroll` tuple "links" a `Student` tuple with a `Course` tuple
 - Many join conditions are “key = key value stored in another table”

Motivation for a design theory

- Why is this design bad?
 - This design has redundancy, because the name of a student is recorded multiple times, once for each course the student is taking
- Why is redundancy bad?
 - Wastes space, complicates updates, and promotes inconsistency
- How about a systematic approach to detecting and removing redundancy in designs?
 - Dependencies, decompositions, and normal forms

Functional dependencies

- A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
- $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes of Y

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>

Must be b Could be anything

FD examples

- `Address (street_address, city, state, zip)`
- `street_address, city, state \rightarrow zip`
- `zip \rightarrow city, state`
- `zip, state \rightarrow zip`?
 - This is a trivial FD
 - Trivial FD: LHS \supseteq RHS
- `zip \rightarrow state, zip`?
 - This is non-trivial, but not completely non-trivial
 - Completely non-trivial FD: LHS \cap RHS = \emptyset

Keys redefined using FD’s

A set of attributes K is a key for a relation R if

- $K \rightarrow$ all (other) attributes of R
 - That is, K is a “super key”
- No proper subset of K satisfies the above condition
 - That is, K is minimal

Reasoning with FD’s

Given a relation R and a set of FD’s \mathcal{F}

- Does another FD follow from \mathcal{F}?
 - Are some of the FD’s in \mathcal{F} redundant (i.e., they follow from the others)?
- Is K a key of R?
 - What are all the keys of R?
Attribute closure

- Given R, a set of FD's F that hold in R, and a set of attributes Z in R:
 - The closure of Z (denoted Z^+) with respect to F is the set of all attributes functionally determined by Z.

- Algorithm for computing the closure:
 - Start with closure = Z
 - If $X \rightarrow Y$ is in F and X is already in the closure, then also add Y to the closure.
 - Repeat until no more attributes can be added.

A more complex example

StudentGrade (SID, $name$, $email$, CID, $grade$)

- $SID \rightarrow name$, $email$
- $email \rightarrow SID$
- SID, $CID \rightarrow grade$

- Not a good design, and we will see why later.

Example of computing closure

- F includes:
 - $SID \rightarrow name$, $email$
 - $email \rightarrow SID$
 - SID, $CID \rightarrow grade$

- $\{ CID, email \}^+ = ?$
- $email \rightarrow SID$
 - Add SID; closure is now $\{ CID, email, SID \}$
- $SID \rightarrow name$, $email$
 - Add $name$, $email$; closure is now $\{ CID, email, SID, name \}$
- SID, $CID \rightarrow grade$
 - Add $grade$; closure is now all the attributes in StudentGrade.

Using attribute closure

Given a relation R and set of FD's F:

- Does another FD $X \rightarrow Y$ follow from F?
 - Compute X^+ with respect to F
 - If $Y \subseteq X^+$, then $X \rightarrow Y$ follow from F

- Is K a key of R?
 - Compute K^+ with respect to F
 - If K^+ contains all the attributes of R, K is a super key
 - Still need to verify that K is minimal (how?)

Useful rules of FD’s

- Armstrong’s axioms:
 - Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$
 - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

- Rules derived from axioms:
 - Splitting: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
 - Combining: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$

Non-key FD’s

- Consider a non-trivial FD $X \rightarrow Y$ where X is not a super key:
 - Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

 The fact that a is always associated with b is recorded in multiple rows: redundancy!
Example of redundancy

- StudentGrade (SID, name, email, CID, grade)
- SID → name, email

<table>
<thead>
<tr>
<th>SID</th>
<th>Name</th>
<th>Email</th>
<th>CID</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS216</td>
<td>B</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS214</td>
<td>B</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>milhouse@fox.com</td>
<td>CPS216</td>
<td>B+</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>lisa@fox.com</td>
<td>CPS210</td>
<td>A+</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>ralph@fox.com</td>
<td>CPS214</td>
<td>C</td>
</tr>
</tbody>
</table>

Decomposition

- Eliminates redundancy
- To get back to the original relation: ⊵⊽

Unnecessary decomposition

- Fine: join returns the original relation
- Unnecessary: no redundancy is removed, and now SID is stored twice!

<table>
<thead>
<tr>
<th>SID</th>
<th>Name</th>
<th>Email</th>
<th>CID</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS216</td>
<td>B</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS214</td>
<td>B</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>milhouse@fox.com</td>
<td>CPS216</td>
<td>B+</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>lisa@fox.com</td>
<td>CPS210</td>
<td>A+</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>ralph@fox.com</td>
<td>CPS214</td>
<td>C</td>
</tr>
</tbody>
</table>

Bad decomposition

- Association between CID and grade is lost
- Join returns more rows than the original relation

<table>
<thead>
<tr>
<th>SID</th>
<th>CID</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>CPS216</td>
<td>B</td>
</tr>
<tr>
<td>142</td>
<td>CPS214</td>
<td>B</td>
</tr>
<tr>
<td>123</td>
<td>CPS216</td>
<td>B+</td>
</tr>
<tr>
<td>857</td>
<td>CPS210</td>
<td>A+</td>
</tr>
<tr>
<td>456</td>
<td>CPS214</td>
<td>C</td>
</tr>
</tbody>
</table>

Questions about decomposition

- When to decompose
- How to come up with a correct decomposition

An answer: BCNF

- A relation R is in Boyce-Codd Normal Form if
 - For every non-trivial FD X → Y in R, X is a super key
 - That is, all FDs follow from “key → other attributes”

- When to decompose
 - As long as some relation is not in BCNF
- How to come up with a correct decomposition
 - Always decompose on a BCNF violation
 - Then it is guaranteed to be a correct decomposition!
BCNF decomposition algorithm

- Find a BCNF violation
 - That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super key of R
- Decompose R into R_1 and R_2, where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y
- Repeat until all relations are in BCNF

BCNF decomposition example

- $\text{StudentGrade}(\text{SID}, \text{name}, \text{email}, \text{CID}, \text{grade})$
 - BCNF violation: $\text{name}, \text{email}$
- $\text{Student}(\text{SID}, \text{name}, \text{email})$
 - BCNF
- $\text{Grade}(\text{SID}, \text{CID}, \text{grade})$
 - BCNF

Another example

- $\text{StudentGrade}(\text{SID}, \text{name}, \text{email}, \text{CID}, \text{grade})$
 - BCNF violation: $\text{email} \rightarrow \text{SID}$
- $\text{StudentID}(\text{email}, \text{SID})$
 - BCNF
- $\text{StudentGrade'}(\text{email}, \text{name}, \text{CID}, \text{grade})$
 - BCNF violation: $\text{email} \rightarrow \text{name}$
- $\text{StudentName}(\text{email}, \text{name})$
 - BCNF
- $\text{Grade}(\text{email}, \text{CID}, \text{grade})$
 - BCNF

Recap

- Functional dependencies: generalization of keys
- Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method of removing redundancies due to FD’s
- BCNF: schema in this normal form has no redundancy due to FD’s
- Not covered in this lecture: many other types of dependencies (e.g., MVD) and normal forms (e.g., 4NF)
 - GMUW has all the details
 - Relational design theory was a big research area in the 1970’s, but there is not much going on now