Query Processing

CPS 216
Advanced Database Systems

Announcements (February 22)

- Reading assignment for this week
 - Variant indexes (due next Monday)
- Homework #2 due in 1½ weeks (March 3)
- Course project proposal due in 2 weeks
- Midterm in 2½ weeks

Overview

- Many different ways of processing the same query
 - Scan? Sort? Hash? Use an index?
 - All with different performance characteristics
- Best choice depends on the situation
 - Implement all alternatives
 - Let the query optimizer choose at run-time
Notation

- Relations: \(R, S \)
- Tuples: \(r, s \)
- Number of tuples: \(|R|, |S| \)
- Number of disk blocks: \(B(R), B(S) \)
- Number of memory blocks available: \(M \)
- Cost metric
 - Number of I/O's
 - Memory requirement

Table scan

- Scan table \(R \) and process the query
 - Selection over \(R \)
 - Projection of \(R \) without duplicate elimination
- I/O's: \(B(R) \)
 - Trick for selection: stop early if it is a lookup by key
- Memory requirement: 2 (double buffering)
- Not counting the cost of writing the result out
 - Same for any algorithm!
 - Maybe not needed—results may be pipelined directly into another operator

Nested-loop join

- \(R \bowtie_S S \)
- For each block of \(R \), and for each \(r \) in the block:
 - For each block of \(S \), and for each \(s \) in the block:
 - Output \(rs \) if \(\mathit{p} \) evaluates to true over \(r \) and \(s \)
 - \(R \) is called the outer table; \(S \) is called the inner table
- I/O's: \(B(R) + |R| \cdot B(S) \)
- Memory requirement: 4 (double buffering)
- Improvement: block-based nested-loop join
 - For each block of \(R \), and for each block of \(S \):
 - For each \(r \) in the \(R \) block, and for each \(s \) in the \(S \) block: …
 - I/O's: \(B(R) + B(R) \cdot B(S) \)
 - Memory requirement: same as before
More improvements of nested-loop join

- Stop early
 - If the key of the inner table is being matched
 - May reduce half of the I/O's (less for block-based)
- Make use of available memory

External merge sort

Problem: sort R, but R does not fit in memory

- Pass 0: read M blocks of R at a time, sort them, and write out a level-0 run
 - There are $\lceil B(R)/M \rceil$ level-0 sorted runs
- Pass i: merge $(M – 1)$ level-$(i-1)$ runs at a time, and write out a level-i run
 - $(M – 1)$ memory blocks for input, 1 to buffer output
 - # of level-i runs = \lceil # of level-$(i-1)$ runs / $(M – 1)$ \rceil
- Final pass produces 1 sorted run

Example of external merge sort

- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3, 0
- Each block holds one number, and memory has 3 blocks
- Pass 0
 - 1, 7, 4 \rightarrow 1, 4, 7
 - 5, 2, 8 \rightarrow 2, 5, 8
 - 9, 6, 3 \rightarrow 3, 6, 9
 - 0 \rightarrow 0
- Pass 1
 - 1, 4, 7 + 2, 5, 8 \rightarrow 1, 2, 4, 5, 7, 8
 - 3, 6, 9 + 0 \rightarrow 0, 3, 6, 9
- Pass 2 (final)
 - 1, 2, 4, 5, 7, 8 + 0, 3, 6, 9 \rightarrow 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Performance of external merge sort

- Number of passes: $\left\lceil \log_{M^{-1}} \left(\frac{B(R)}{M} \right) \right\rceil + 1$
- I/O's
 - Multiply by $2 \cdot B(R)$: each pass reads the entire relation once and writes it once
 - Subtract $B(R)$ for the final pass
 - Roughly, this is $O(B(R) \cdot \log M B(R))$
- Memory requirement: M (as much as possible)

Some tricks for sorting

- Double buffering
 - Allocate an additional block for each run
- Blocked I/O
 - Instead of reading/writing one disk block at time, read/write a bunch (“cluster”)
- Dealing with input whose size is not an exact power of fan-in

Internal sort algorithm

- Quicksort
 - Fast
- Replacement selection
 - One block for input, one for output, rest for a heap
 - Fill the heap with input records
 - Find the smallest record in the heap that is no less than the largest record in the current run
 - If that exists, move it to the output buffer, and move a new record from input buffer into the heap
 - If that does not exist, flush output and start a new run
 - Slower than quicksort, but produces longer runs (twice the size of memory if records are in random order)
Sort-merge join

- $R \bowtie_{A = B} S$
- Sort R and S by their join attributes, and then merge
 - $r, s = \text{the first tuples in sorted } R \text{ and } S$
 - Repeat until one of R and S is exhausted:
 - If $r.A > s.B$ then $s = \text{next tuple in } S$
 - else if $r.A < s.B$ then $r = \text{next tuple in } R$
 - else output all matching tuples, and
 - $r, s = \text{next in } R \text{ and } S$

- I/O’s: sorting + $2B(R) + 2B(S)$
 - In most cases (e.g., join of key and foreign key)
 - Worst case is $B(R) \cdot B(S)$: everything joins

Example

<table>
<thead>
<tr>
<th>R:</th>
<th>S:</th>
<th>$R \bowtie_{A = B} S$:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r_1.A = 1$</td>
<td>$s_1.B = 1$</td>
<td>r_1s_1</td>
</tr>
<tr>
<td>$r_2.A = 3$</td>
<td>$s_2.B = 2$</td>
<td>r_2s_2</td>
</tr>
<tr>
<td>$r_3.A = 3$</td>
<td>$s_3.B = 3$</td>
<td>r_3s_3</td>
</tr>
<tr>
<td>$r_4.A = 5$</td>
<td>$s_4.B = 3$</td>
<td>r_4s_4</td>
</tr>
<tr>
<td>$r_5.A = 7$</td>
<td>$s_5.B = 8$</td>
<td>r_5s_5</td>
</tr>
<tr>
<td>$r_6.A = 7$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r_7.A = 8$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Optimization of SMJ

- Idea: combine join with the merge phase of merge sort
- Sort: produce sorted runs of size M for R and S
- Merge and join: merge the runs of R, merge the runs of S, and merge-join the result streams as they are generated!
Performance of two-pass SMJ

- I/O's: $3 \cdot (B(R) + B(S))$
- Memory requirement
 - To be able to merge in one pass, we should have enough memory to accommodate one block from each run: $M > B(R) / M + B(S) / M$
 - $M > \sqrt{B(R) + B(S)}$

Other sort-based algorithms

- Union (set), difference, intersection
 - More or less like SMJ
- Duplication elimination
 - External merge sort
 - Eliminate duplicates in sort and merge
- GROUP BY and aggregation
 - External merge sort
 - Produce partial aggregate values in each run
 - Combine partial aggregate values during merge
 - Partial aggregate values don’t always work though

Hash join

- $R \bowtie_{R.A} S_B S$
- Main idea
 - Partition R and S by hashing their join attributes, and then consider corresponding partitions of R and S
 - If $r.A$ and $s.B$ get hashed to different partitions, they don’t join

Nested loop join considers all slots
Hash join considers only those along the diagonal
Partitioning phase

- Partition R and S according to the same hash function on their join attributes

![Diagram: Partitioning phase]

Probing phase

- Read in each partition of R, stream in the corresponding partition of S, join
 - Typically build a hash table for the partition of R
 - Not the same hash function used for partition, of course!

![Diagram: Probing phase]

Performance of hash join

- I/O’s: $3 \cdot (B(R) + B(S))$
- Memory requirement:
 - In the probing phase, we should have enough memory to fit one partition of R: $M - 1 \geq B(R) / (M - 1)$
 - $M > \text{sqrt}(B(R))$
 - We can always pick R to be the smaller relation, so:
 - $M > \text{sqrt}(\min(B(R), B(S)))$
Hash join tricks

• What if a partition is too large for memory?
 • Read it back in and partition it further!
 • See the duality in multi-pass merge sort here?

Hybrid hash join

• What if there is extra memory available?
 • Use it to avoid writing/re-reading partitions
 • Of both R and S!

A generalization of the idea is described in the survey paper by Graefe

Hash join versus SMJ

(Assuming two-pass)

• I/O's: same
• Memory requirement: hash join is lower
 • $\sqrt{\min(B(R), B(S))} < \sqrt{B(R) + B(S)}$

• Other factors
 • Hash join performance depends on the quality of the hash
 • Might not get evenly sized buckets
What about nested-loop join?

Other hash-based algorithms

- Union (set), difference, intersection
 - More or less like hash join
- Duplicate elimination
 - Check for duplicates within each partition/bucket
- GROUP BY and aggregation
 - Apply the hash functions to GROUP BY attributes
 - Tuples in the same group must end up in the same partition/bucket
 - Keep a running aggregate value for each group

Duality of sort and hash

- Divide-and-conquer paradigm
 - Sorting: physical division, logical combination
 - Hashing: logical division, physical combination
- Handling very large inputs
 - Sorting: multi-level merge
 - Hashing: recursive partitioning
- I/O patterns
 - Sorting: sequential write, random read (merge)
 - Hashing: random write, sequential read (partition)