Query Processing with Indexes

CPS 216
Advanced Database Systems

Announcements (February 24)

- More reading assignment for next week
 - Buffer management (due next Wednesday)
- Homework #2 due next Thursday
- Course project proposal due in 1½ weeks
- Midterm in two weeks
- Christos Faloutsos (CMU) talk
 - “Data Mining Using Fractals and Power Laws”
 - 4-5pm, Monday, February 28
 - 130A North Building (telecast from UNC)

Review

- Many different ways of processing the same query
 - Scan (e.g., nested-loop join)
 - Sort (e.g., sort-merge join)
 - Hash (e.g., hash join)
 - Index
Selection using index

- Equality predicate: $\sigma_A = v (R)$
 - Use an ISAM, B+-tree, or hash index on $R(A)$
- Range predicate: $\sigma_A > v (R)$
 - Use an ordered index (e.g., ISAM or B+-tree) on $R(A)$
 - Hash index is not applicable

- Indexes other than those on $R(A)$ may be useful
 - Example: B+-tree index on $R(A,B)$
 - How about B+-tree index on $R(B,A)$?

Index versus table scan

Situations where index clearly wins:

- Index-only queries which do not require retrieving actual tuples
 - Example: $\pi_A (\sigma_A > v (R))$
- Primary index clustered according to search key
 - One lookup leads to all result tuples in their entirety

Index versus table scan (cont’d)

BUT(!):

- Consider $\sigma_A > v (R)$ and a secondary, non-clustered index on $R(A)$
 - Need to follow pointers to get the actual result tuples
 - Say that 20% of R satisfies $A > v$
 - Could happen even for equality predicates
 - I/O’s for index-based selection: lookup + 20% $|R|$
 - I/O’s for scan-based selection: $B(R)$
 - Table scan wins if a block contains more than 5 tuples
Index nested-loop join

- $R \bowtie_{R.A = S.B} S$
- Idea: use the value of $R.A$ to probe the index on $S(B)$
- For each block of R, and for each r in the block:
 - Use the index on $S(B)$ to retrieve s with $s.B = r.A$
 - Output rs
- I/Os: $B(R) + |R| \cdot $ (index lookup)
 - Typically, the cost of an index lookup is 2-4 I/O's
 - Beats other join methods if $|R|$ is not too big
 - Better pick R to be the smaller relation
- Memory requirement: 2

Tricks for index nested-loop join

- Goal: reduce $|R| \cdot $ (index lookup)
- For tree-based indexes, keep the upper part of the tree in memory
- For extensible hash index, keep the directory in memory
- Sort or partition R according to the join attribute
 - Improves locality: subsequent lookup may follow the same path or go to the same bucket

Zig-zag join using ordered indexes

- $R \bowtie_{R.A = S.B} S$
- Idea: use the ordering provided by the indexes on $R(A)$ and $S(B)$ to eliminate the sorting step of sort-merge join
- Trick: use the larger key to probe the other index
 - Possibly skipping many keys that do not match
More indexes ahead!

- Bitmap index
 - Generalized value-list index
- Projection index
- Bit-sliced index

Search key values \(\times \) tuples

<table>
<thead>
<tr>
<th>Search key values</th>
<th>Tuples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search key values</td>
<td>0 1 2 3</td>
</tr>
<tr>
<td>8</td>
<td>1 1 0</td>
</tr>
<tr>
<td>9</td>
<td>0 0 1</td>
</tr>
<tr>
<td>10</td>
<td>0 0 1</td>
</tr>
<tr>
<td>26</td>
<td>0 0 1</td>
</tr>
<tr>
<td>108</td>
<td>0 2 0</td>
</tr>
</tbody>
</table>

- Looks familiar?
 - Keywords \(\times \) documents

Bitmap index

- Value-list index—stores the matrix by rows
 - Traditionally list contains pointers to tuples
 - \(B^+ \)-tree: tuples with same search key values
 - Inverted list: documents with same keywords
- If there are not many search key values, and there are lots of 1’s in each row, pointer list is not space-efficient
 - How about a bitmap?
 - Still a \(B^+ \)-tree, except leaves have a different format
Technicalities

- How do we go from a bitmap index (0 to \(n - 1 \)) to the actual tuple?
 - One more level of indirection solves everything
 - Or, given a bitmap index, directly calculate the physical block number and the slot number within the block for the tuple
- In either case, certain block/slot may be invalid
 - Because of deletion, or variable-length tuples
 - Keep an existence bitmap: bit set to 1 if tuple exists

Bitmap versus traditional value-list

- Operations on bitmaps are faster than pointer lists
 - Bitmap AND: bit-wise AND
 - Value-list AND: sort-merge join
- Bitmap is more efficient when the matrix is sufficiently dense; otherwise, pointer list is more efficient
 - Smaller means more in memory and fewer I/O’s
- Generalized value-list index: with both bitmap and pointer list as alternatives

Projection index

- Just store \(\pi_A (R) \) and use it as an index!
Why projection index?

- Idea: still a table scan, but we are scanning a much smaller table (project index)
 - Savings could be substantial for long tuples with lots of attributes
- Looks familiar?

Bit-sliced index

- If a column stores binary numbers, then slice their bits vertically
 - Basically a projection index by slices

Aggregate query processing example

```
SELECT SUM(dollar_sales)
FROM Sales
WHERE condition;
```

- Already found \(B_f \) (a bitmap or a sorted list of TID's that point to Sales tuples that satisfy condition)
 - Probably used a secondary index
- Need to compute \(\text{SUM}(dollar_sales) \) for tuples in \(B_f \)
SUM without any index

- For each tuple in B_f, go fetch the actual tuple, and add dollar_sales to a running sum
- I/O's: number of Sales blocks with B_f tuples
 - Assuming we fetch them in sorted order

SUM with a value-list index

- Assume a value-list index on Sales(dollar_sales)
- Idea: the index stores dollar_sales values and their counts (in a pretty compact form)
- sum = 0;
 Scan Sales(dollar_sales) index; for each indexed value v with value-list B_v:
 sum += $v \times \text{count-1-bits}(B_v \text{ AND } B_f)$;
- I/Os: number of blocks taken by the value-list index
- Bitmaps can possibly speed up AND and reduce the size of the index

SUM with a projection index

- Assume a project index on Sales(dollar_sales)
- Idea: merge join B_f and the projection index, add joining tuples’ dollar_sales to a running sum
 - Assuming both B_f and the index are sorted on TID
- I/O’s: number of blocks taken by the projection index
 - Compared with a value-list index, the projection index may be more compact (no empty space or pointers), but it does store duplicate dollar_sales values
- Also: simpler algorithm, fewer CPU operations
SUM with a bit-sliced index

- Assume a bit-sliced index on \(Sales(dollar_sales) \), with slices \(B_{k-1}, \ldots, B_1, B_0 \).
- \[\text{sum} = 0; \]
 \[\text{for } i = 0 \text{ to } k - 1: \]
 \[\text{sum} += 2^i \times \text{count-1-bits}(B_i \text{ AND } B_f); \]
- \(I/O \): number of blocks taken by the bit-sliced index
- Conceptually a bit-sliced index contains the same information as a projection index
 - But the bit-sliced index does not keep TID
 - Bitmap AND is faster

Summary of SUM

- **Best**: bit-sliced index
 - Index is small
 - \(B_f \) can be applied fast!
- **Good**: projection index
- **Not bad**: value-list index
 - Full-fledged index carries a bigger overhead
 - The fact that we have counts of values helped
 - But we did not really need values to be ordered

MEDIAN

\[
\text{SELECT MEDIAN}(\text{dollar_sales})
\text{ FROM } Sales
\text{ WHERE } condition;
\]
- Same deal: already found \(B_f \) (a bitmap or a sorted list of TID's that point to \(Sales \) tuples that satisfy \(condition \))
- Need to find the \(dollar_sales \) value that is greater than or equal to \(\frac{1}{2} \times \text{count-1-bits}(B_f) \) \(dollar_sales \) values among \(B_f \) tuples
MEDIAN with an ordered value-list index

- Idea: take advantage of the fact that the index is ordered by \textit{dollar_sales}
- Scan the index in order, count the number of tuples that appeared in \(B_j\) until the count reaches \(\frac{1}{2} \times \text{count-1-bits}(B_j)\)
- I/O's: roughly half of the index

MEDIAN with a projection index

- In general, need to sort the index by \textit{dollar_sales}
 - Well, when you sort, you more or less get back an ordered value-list index!
- Not useful unless \(B_j\) is small

MEDIAN with a bit-sliced index

- Tough at the first glance—index is not sorted
- Think of it as sorted
 - We won't actually make use of this fact

<table>
<thead>
<tr>
<th>Look at (B_{k-1}) first</th>
<th>0 0 0... Yes; continue searching for median here</th>
</tr>
</thead>
<tbody>
<tr>
<td>More than half are 0's?</td>
<td>0 0 1... No; continue searching for median here</td>
</tr>
</tbody>
</table>

By looking at \(B_{k-1}\), we know the \((k - 1)\)-th bit of the median
MEDIAN with a bit-sliced index

- median = 0;
- $$B_{\text{current}} = B_{f}$$; // which tuples we are considering
- sofar = 0; // number of tuples whose values are less
- // than what we are considering

for i = k – 1 to 0:
- if (sofar + count-1-bits($$B_{\text{current}} \text{ AND NOT}(B_{i})$$) ≤ $$\frac{1}{2} \times \text{count-1-bits}(B_{f})$$):
 - $$B_{\text{current}} = B_{\text{current}} \text{ AND } B_{i}$$;
 - sofar += count-1-bits($$B_{\text{current}} \text{ AND NOT}(B_{i})$$);
 - median += 2^i;
- else:
 - $$B_{\text{current}} = B_{\text{current}} \text{ AND NOT}(B_{i})$$;

- I/O’s: still need to scan the entire index

Summary of MEDIAN

- Best: ordered value-list index
 - It helps to be ordered!

- Pretty good: bit-sliced index
 - Could beat ordered value-list index if $$B_{i}$$ is “clustered”
 - Only need to retrieve the corresponding segment

More variant indexes

“Improved Query Performance with Variant Indexes,” by O’Neil and Quass. SIGMOD, 1997

- MIN/MAX, and range query using bit-sliced index
- Join indexes for star schema
 - Traditional: one for each combination of foreign columns
 - Bitmap: one for each foreign column
- Precomputed query results (materialized views)?
Variant vs. traditional indexes

- What is the more glaring problem of these variant indexes that makes them not as widely applicable as the B*-tree?
- How did the paper get away with that?