Announcements (April 19)

- Homework #4 (last one; short) will be assigned this Thursday
- Homework #3 graded; grades posted
- Project demo period April 28 – May 1
 - Please email me to sign up for a 30-minute slot
- Final exam on May 2 (Monday 2-5pm)

Review of the bigger picture

- Query optimization
 - Consider a space of possible plans (April 7)
 - Rewrite logical plan to combine “blocks” as much as possible
 - Each block will then be optimized separately
 - Fewer blocks → larger plan space
 - Estimate costs of plans in the search space (today)
 - Search through the space for the “best” plan (next lecture)
Cost estimation

Physical plan example:

Input to \text{SORT}(GID):
- \text{SCAN}(Course)
- \text{SORT}(GID)
- \text{MERGE-JOIN}(GID)
- \text{PROJECT}(title)
- \text{MERGE-JOIN}(SID)
- \text{SCAN}(Enroll)
- \text{SORT}(SID)
- \text{SCAN}(Student)
- \text{FILTER}(name = "Bart")

- \text{SORT}(GID)
- \text{SCAN}(enrolled)

- \text{SCAN}(Course)
- \text{MERGE-JOIN}(GID)

- \text{SCAN}(Enroll)
- \text{SORT}(SID)
- \text{SCAN}(Student)
- \text{FILTER}(name = "Bart")

- \text{SORT}(GID)
- \text{SCAN}(enrolled)

We have: cost estimation for each operator
- Example: \text{SORT}(GID) takes \(2 \times B(input)\)
 - But what is \(B(input)\)?

We need: size of intermediate results

Simple statistics

Suppose DBMS collects the following statistics for each table \(R\)
- Size of \(R\): \(|R|\)
- For each column \(A\) in \(R\), the number of distinct \(A\) values: \(|\pi_A R|\)
- Assumption: \(R.A\) values are uniformly distributed over \(\pi_A R\) (i.e., all values have the same count in \(R\))

Statistics are traditionally re-computed periodically; accurate statistics are not required for estimation

Selections with equality predicates

- \(Q: \sigma_A = v R\)
- Additional assumption: \(v\) does appear in \(R\)
- \(|Q| \approx \left\lceil \frac{|R|}{|\pi_A R|} \right\rceil\)
 - \(1/|\pi_A R|\) is the selectivity factor of predicate \((A = v)\)
 - This predicate reduces the size of input table by the selectivity factor
Conjunctive predicates

\(Q: \sigma_A = u \text{ and } B = v \ R \)

- Additional assumption: \((A = u)\) and \((B = v)\) are independent
 - Example:
 - Counterexample:
- \(|Q| \approx |R| \cdot (|\pi_A R| \cdot |\pi_B R|)\)
- Reduce the input size by all selectivity factors

Negated and disjunctive predicates

\(Q: \sigma_A \neq v \ R \)

- \(|Q| \approx |R| \cdot (1 - 1/|\pi_A R|)\)
 - Selectivity factor of \(\neg p\) is \((1 - \text{selectivity factor of } p)\)

\(Q: \sigma_A = u \text{ or } B = v \ R \)

- \(|Q| \approx |R| \cdot (1/|\pi_A R| + 1/|\pi_B R|)\)
 - \(|Q| \approx |R| \cdot (1 - (1 - 1/|\pi_A R|) \cdot (1 - 1/|\pi_B R|))\)

Range predicates

\(Q: \sigma_A > v \ R \)

- Not enough information!
 - Just pick, say, \(|Q| \approx |R| \cdot 1/3\)
- With more information
 - Largest \(R.A\) value: \(\text{high}(R.A)\)
 - Smallest \(R.A\) value: \(\text{low}(R.A)\)
 - \(|Q| \approx |R| \cdot (\text{high}(R.A) - v) / (\text{high}(R.A) - \text{low}(R.A))\)
 - Additional assumption: uniform spread
 - In practice: sometimes the second highest and lowest are used instead
 - The highest and the lowest are often used by inexperienced database designer to represent invalid values!
Two-way equi-join

\[Q: R(A, B) \bowtie S(B, C) \]

- Additional assumption: containment of value sets
 - Every row in the “smaller” table (one with fewer distinct values for the join column) joins with some row in the other table
 - That is, if \(\pi_B R \leq \pi_B S \) then \(\pi_B R \subseteq \pi_B S \)
 - Certainly not true in general

\[|Q| \approx \left(|R| \cdot |S| / \max(|\pi_B R|, |\pi_B S|) \right) \]

Selectivity factor of \(R.B = S.B \) is

\[1 / \max(|\pi_B R|, |\pi_B S|) \]

Multi-table equi-join

\[Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \]

- What is the number of distinct \(C \) values in the join of \(R \) and \(S \)?

- Additional assumption: preservation of value sets
 - A non-join attribute does not lose values from its set of possible values
 - That is, if \(A \) is in \(R \) but not \(S \), then \(\pi_A (R \bowtie S) = \pi_A R \)
 - Certainly not true in general

\[|Q| \approx \left(|R| \cdot |S| \cdot |T| \right) / \left(\max(|\pi_B R|, |\pi_B S|) \cdot \max(|\pi_C S|, |\pi_C T|) \right) \]

Multi-table equi-join (cont’d)

\[Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \]

- Start with the product of relation sizes
 - \(|R| \cdot |S| \cdot |T| \)

- Reduce the total size by the selectivity factor of each join predicate
 - \(R.B = S.B: 1 / \max(|\pi_B R|, |\pi_B S|) \)
 - \(S.C = T.C: 1 / \max(|\pi_C S|, |\pi_C T|) \)
 - \[|Q| \approx \left(|R| \cdot |S| \cdot |T| \right) / \left(\max(|\pi_B R|, |\pi_B S|) \cdot \max(|\pi_C S|, |\pi_C T|) \right) \]
Recap: cost estimation with simple stats

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Maybe okay if we overestimate or underestimate consistently
 - May lead to very nasty optimizer “hints”

    ```sql
    SELECT * FROM Student WHERE GPA > 3.9;
    SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9;
    ```

- Next: better estimation using more information (histograms)

Histograms

- Motivation
 - $|R|$, $|\pi, R|$, high($R.A$), low($R.A$)
 - Too little information
 - Actual distribution of $R.A$: $(v_1, f_1), (v_2, f_2), \ldots, (v_n, f_n)$
 - f_i is frequency of v_i or the number of times v_i appears in $R.A$
 - Too much information

- Anything in between?
 - Partition the domain of $R.A$ into buckets
 - Store a small summary of the distribution within each bucket
 - Number of buckets is the “knob” that controls the resolution

Equi-width histogram

- Divide the domain into B buckets of equal width
- Store the bucket boundaries and the sum of frequencies of the values within each bucket
Construction and maintenance

- **Construction**
 - If high(R_A) and low(R_A) are known, use one pass over R to construct an accurate equi-width histogram
 - Keep a running count for each bucket
 - If scanning is unacceptable, use sampling
 - Construct a histogram on R_{sample} and scale frequencies by $|R| / |R_{sample}|$

- **Maintenance**
 - Incremental maintenance: for each update on R, increment/decrement the corresponding bucket frequencies
 - Periodical recomputation: because distribution changes slowly

Using an equi-width histogram

- **Q: $\sigma_A = 5$ R**
 - 5 is in bucket [5, 8] (with 19 rows)
 - Assume uniform distribution within the bucket
 - $|Q| \approx 19 / 4 \approx 5$ ($|Q| = 1$, actually)

- **Q: $\sigma_A \geq 7$ and $4 \leq 16$ R**
 - [7, 16] covers [9, 12] (27) and [13, 16] (13)
 - [7, 16] partially covers [5, 8] (19)
 - $|Q| \approx 19 / 2 + 27 + 13 \approx 50$ ($|Q| = 52$, actually)

- **Q: $R(A, B) \bowtie S(B, C)$**
 - Consider only joining buckets in histograms for $R.B$ and $S.B$
 - Rows in other buckets do not join
 - Within the joining buckets, use simple rules

Equi-height histogram

- Divide the domain into B buckets with roughly the same number of rows in each bucket
- Store this number and the bucket boundaries
- Intuition: high frequencies are more important than low frequencies
Construction and maintenance

- Construction
 - Sort all \(R.A \) values, and then take equally spaced splits
 - Example: \(1 \ 2 \ 2 \ 3 \ 4 \ 7 \ 8 \ 9 \ 10 \ 10 \ 10 \ 11 \ 11 \ 12 \ 12 \ 14 \ 16 \ ... \)
 - Sampling also works
- Maintenance
 - Incremental maintenance
 - Merge adjacent buckets with small counts
 - Split any bucket with a large count
 - Select the median value to split
 - Need a sample of the values within this bucket to work well
 - Periodic recomputation also works

Using an equi-height histogram

- \(Q: \sigma_A = \gamma R \)
 - \(5 \) is in bucket \([1, 7]\) (16)
 - Assume uniform distribution within the bucket
 - \(|Q| \approx 16/7 \approx 2\) \(|Q| = 1\), actually
- \(Q: \sigma_A \geq 7 \) and \(A \leq 16 \)
 - \([7, 16]\) covers \([8, 9], [10, 11], [12, 16]\) (all with 16)
 - \([7, 16]\) partially covers \([1, 7]\) (16)
 - \(|Q| \approx 16/7 + 16 + 16 + 16 \approx 50\) \(|Q| = 52\), actually
- Join similar to equi-width histogram

Histogram tricks

- Store the number of distinct values in each bucket
 - To remove the effects of the values with 0 frequency
 - These values tend to cause underestimation
 - Assume uniform spread (the difference between this value and the next value with non-zero frequency)
- Compressed histogram
 - Store \((r, f)\) pairs explicitly if \(f \) is high
 - For other values, use an equi-width or equi-height histogram
- Self-tuning
 - Analyze feedback from query execution engine to refine histograms
 - Aboulnaga and Chaudhuri, SIGMOD 1999
More histograms

- More in Poosala et al., *SIGMOD* 1996

- **V-optimal**(V, F) histogram
 - Avoid putting very different frequencies into the same bucket
 - Partition in a way to minimize $\sum_i \text{VAR}_i$ overall, where VAR_i is the frequency variance within bucket i

- **MaxDiff**(V, A) histogram
 - Define area to be the product of the frequency of a value and its spread
 - Insert bucket boundaries where two adjacent areas differ by large amounts
 - A bit easier to construct than V-optimal; comparable performance

Wavelets

- Mathematical tool for hierarchical decomposition of functions and signals

- Haar wavelets: recursive pair-wise averaging and differencing at different resolutions
 - Simplest wavelet basis, easy to implement

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Averages</th>
<th>Detail coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>[2, 2, 0, 2, 3, 5, 4, 4]</td>
<td>[0, -1, -1, 0]</td>
</tr>
<tr>
<td>2</td>
<td>[2, 1, 4, 4]</td>
<td>[0, 0]</td>
</tr>
<tr>
<td>1</td>
<td>[1.5, 4]</td>
<td>[0.5, 0]</td>
</tr>
<tr>
<td>0</td>
<td>[2.75]</td>
<td>[1.25]</td>
</tr>
</tbody>
</table>

Haar wavelet decomposition: [2.75, -1.25, 0.5, 0, 0, -1, -1, 0]
Wavelet-based histogram

- Idea: use a compact subset of wavelet coefficients to approximate the data distribution
 - Matias et al., SIGMOD 1998
 - Transform the distribution function which maps v_i to f_i

- Steps
 - Compute cumulative data distribution function $C(v)$
 - $C(v)$ is the number of tuples with $R.A \leq v$
 - Compute wavelet transform of C
 - Coefficient thresholding: keep only the coefficients that are largest in absolute normalized value
 - For Haar wavelets, divide coefficients at resolution j by $2^{j/2}$

Using a wavelet-based histogram

- Q: $\sigma_A > u$ and $A \leq v \cdot R$
- $|Q| = C(v) - C(u)$

- Search the tree to reconstruct $C(v)$ and $C(u)$
 - Worst case: two paths, $O(\log N)$, where N is the size of the domain
 - If we just store B coefficients, it becomes $O(B)$, but answers are now approximate

- What about Q: $\sigma_A = v \cdot R$?

Summary of histograms

- Wavelet-based histograms are shown to work better than traditional bucket-based histograms
- The trick of using cumulative distribution for range query estimation also works for bucket-based histograms
- Trade-off: better accuracy \leftrightarrow bigger size, and higher construction and maintenance costs