Query Optimization
Part III

CPS 216
Advanced Database Systems

Announcements (April 21)

- Homework #4 due next Thursday
- Classes on both Tuesday and Thursday next week
- Project demo period: April 28 – May 1
 - Remember to email me to sign up for a 30-minute slot
- Final exam on Monday, May 2, 2-5pm
 - 3 hours—no time pressure!
 - Open book, open notes
 - Comprehensive, but with emphasis on the second half of the course and materials exercised in homework

Review of the bigger picture

Query optimization

- Consider a space of possible plans
- Estimate costs of plans in the search space
- Search through the space for the “best” plan (today)

- Focus on select-project-join query blocks
 - Join ordering is the most important subproblem
Search space

- "Bushy" plan example:

- Search space is huge: 30240 bushy plans for a six-table join
- More if we consider:
 - Multiway joins
 - Different join methods
 - Placement of selection and projection operators

Left-deep plans

- Heuristic: consider only "left-deep" plans, in which only the left child can be a join
- How many left-deep plans are there for $R_1 \bowtie \cdots \bowtie R_n$?

A greedy algorithm

- S_1, \ldots, S_n
 - Say selections have been pushed down; i.e., $S_j = \sigma_{p_j} R_i$
 - Start with the pair S_j, S_i with the smallest estimated size for $S_j \bowtie S_i$
 - Repeat until no table is left:
 - Pick S_k from the remaining tables such that the join of S_k and the current result yields an intermediate result of the smallest size

Pick most efficient join method
Minimize expected size
Current subplan
Remaining tables to be joined

Complexity?
Query optimization in System R

- A.k.a. Selinger-style query optimization
 - The classic paper on query optimization (Selinger et al., SIGMOD 1979)

- Basic ideas
 - Left-deep trees only
 - Bottom-up generation of plans using dynamic programming
 - "Interesting orders"

Bottom-up plan generation

- Observation 1: Once we have joined \(k \) tables together, the method of joining this result further with another table is independent of the previous join methods
- Observation 2: Any subplan of an optimal plan must also be optimal (otherwise we could replace the subplan to get a better overall plan)
 - Not exactly accurate (next slide)

- Bottom-up generation of optimal left-deep plans
 - Compute the optimal plans for joining \(k \) tables together
 - Suboptimal plans are pruned
 - From these plans, derive optimal plans for joining \(k + 1 \) tables

The need for “interesting order”

- Example: \(R(A, B) \bowtie S(A, C) \bowtie T(A, D) \)
- Best plan for \(R \bowtie S \): nested-loop join (beats sort-merge)
- Best overall plan: sort-merge join \(R \) and \(S \), and then sort-merge join with \(T \)
 - Subplan of the optimal plan is not optimal!
- Why?
 - The result of the sort-merge join of \(R \) and \(S \) is sorted on \(A \)
 - This is an interesting order that can be exploited by later processing (e.g., join, duplicate elimination, GROUP BY, ORDER BY, etc.).
Dealing with interesting orders

- When picking the best plan
 - Comparing their costs is not enough
 - Plans are now partially ordered
 - Plan X is better than plan Y if
 - Cost of X is lower than Y
 - Interesting orders produced by X subsume those produced by Y
 - Comparing interesting orders is also needed
 - Plans are now partially ordered
 - Interesting orders produced by X subsume those produced by Y
- Need to keep a set of optimal plans for joining every combination of \(k \) tables
 - At most one for each interesting order

System-R algorithm

- Pass 1: Find the best single-table plans
- Pass 2: Find the best two-table plans by considering each single-table plan (from Pass 1) as the outer input and every other table as the inner input
- ...
- Pass \(k \): Find the best \(k \)-table plans by considering each \((k-1)\)-table plan (from Pass \(k-1 \)) as the outer input and every other table as the inner input
- ...
- Heuristics
 - Push selections and projections down
 - Process cross products at the end

Reasoning about predicates

- \texttt{SELECT * FROM R, S, T;}
 \texttt{WHERE R.A = S.A AND S.A = T.A ;}
- Looks like a cross product between \(R \) and \(T \)
 - No join condition
- A good optimizer should be able to detect this case and consider the possibility of joining \(R \) with \(T \) first
System-R algorithm example

- SELECT SID, CID
 FROM Student, Enroll, Course
 WHERE Student.age < 10
 AND Student.SID = Enroll.SID
 AND Enroll.CID = Course.CID
 AND Course.title LIKE '%data%';

- Primary keys/indexes
 - Student(SID), Enroll(CID, SID), Course(CID)
- Ordered, secondary indexes
 - Student(age), Course(title)

Example: pass 1

- Plans for {Student}
 - S1: Table scan, then filter \((age < 10)\); cost 100; result ordered by SID
 - S2: Index scan using condition \((age < 10)\); cost 5; result ordered by age

- Plans for {Enroll}
 - E1: Table scan; cost 1000; result ordered by CID, SID

- Plans for {Course}
 - C1: Table scan, then filter \((title \text{ LIKE } '%data\%')\); cost 40; result ordered by CID
 - C2: Index scan with filter \((title \text{ LIKE } '%data\%')\); cost 60; result ordered by title

Example: pass 2

- Plans for \{Student, Enroll\}
 - Extending best plans for \{Student\}
 - From S1 (table scan, then filter \((age < 10)\))
 - Block-based nested loop join with Enroll; cost 1100
 - Sort Enroll by SID, and merge join; cost 5100; ordered by SID ← no longer an interesting order
 - From S2 (index scan using condition \((age < 10)\))
 - Block-based nested loop join with Enroll; cost 1005
 - Extending best plans for \{Enroll\}
Example: pass 2 continued

- Plans for \{Student, Course\}
 - Ignore; it is a cross product

- Plans for \{Enroll, Course\}
 - Extending best plans for \{Course\}
 - From C1 (table scan, then filter (title LIKE '%data%'))
 - Merge join; cost 1040
 - Extending best plans for \{Enroll\} ...

Example: pass 3

- Finally, plans for \{Student, Enroll, Course\}
 - Extending best plans for \{Student, Enroll\}
 - (INDEX-SCAN(Student) NLJ Enroll) NLJ FILTER(Course);
 cost ...
 - ...
 - Extending best plans for \{Student, Course\}
 - None!
 - Extending best plans for \{Enroll, Course\}
 - (FILTER(Course) SMJ Enroll) NLJ (INDEX-SCAN(Student));
 cost ...
 - ...

Considering bushy plans

- Store all optimal 1-table, 2-table, ..., and \(k\)-table plans
- To find the optimal plan for \(k+1\) tables
 - For every possible partition of these tables into two groups, find the best ways of joining the optimal plans for the two groups
 - Store the overall optimal plans
Optimizer “blow-up”

- A 20-way join will easily choke an optimizer using the System-R algorithm

Solutions
- Heuristics-based query optimization
- Randomized query optimization (Ioannidis & Kang, SIGMOD 1990)
- Genetic programming (PostgreSQL)

Search space revisited

Transformations

- Relational algebra equivalences (or query rewrite rules in general):
 - Join method choice: $R \bowtie_{\text{method}_1} S \rightarrow R \bowtie_{\text{method}_2} S$
 - Join commutativity: $R \bowtie S \rightarrow S \bowtie R$
 - Join associativity: $(R \bowtie S) \bowtie T \rightarrow R \bowtie (S \bowtie T)$
 - Left join exchange: $(R \bowtie S) \bowtie T \rightarrow R \bowtie (T \bowtie S)$
 - Right join exchange: $R \bowtie (S \bowtie T) \rightarrow S \bowtie (R \bowtie T)$
 - Why the last two redundant rules?
Iterative improvement

- Repeat until some stopping condition (e.g., time runs out):
 - Start with a random plan
 - Repeatedly go downhill (i.e., pick a neighbor with a lower cost randomly) to get to a local optimum
- Return the smallest local optimum found

Simulated annealing

- Start with a plan and an initial temperature
- Repeat until temperature is 0:
 - Repeat until some equilibrium (e.g., a fixed number of iterations):
 - Move to a random neighbor of the plan (an uphill move is allowed with probability $e^{-\frac{\Delta \text{cost}}{\text{temperature}}}$)
 - Larger \Rightarrow smaller probability
 - Lower temperature \Rightarrow smaller probability
 - Reduce temperature
- Return the plan visited with the lowest cost

Two-phase optimization

- Phase I: run iterative improvement for a while to find a good local optimum
- Phase II: run simulated annealing with a low initial temperature to get more improvements

Why does this heuristic tend to work better than both iterative improvement and simulated annealing?
Shape of the cost function

- An average local optimum has a much lower cost than an average plan
- The average distance between a random state and a local optimum is long
- There are lots of local optima
- Many local optima are connected together through low-cost plans within short distances

Comparison of randomized algorithms

- Iterative improvement
 - Too easily trapped in a local optimum
 - Too much work to restart
- Simulated annealing
- Two-phase