Query Optimization
Part III
CPS 216
Advanced Database Systems

Announcements (April 21)
* Homework #4 due next Thursday
* Classes on both Tuesday and Thursday next week
* Project demo period: April 28 – May 1
 - Remember to email me to sign up for a 30-minute slot
* Final exam on Monday, May 2, 2-5pm
 - 3 hours—no time pressure!
 - Open book, open notes
 - Comprehensive, but with emphasis on the second half of the course and materials exercised in homework

Review of the bigger picture
Query optimization
- Consider a space of possible plans
- Estimate costs of plans in the search space
- Search through the space for the “best” plan (today)
 - Focus on select-project-join query blocks
 - Join ordering is the most important subproblem

Search space
- “Bushy” plan example:
 - Search space is huge: 30240 bushy plans for a six-table join
 - More if we consider:
 - Multiway joins
 - Different join methods
 - Placement of selection and projection operators

Left-deep plans
- Heuristic: consider only “left-deep” plans, in which only the left child can be a join
 - Tend to be better than plans of other shapes, because many join algorithms scan inner (right) input multiple times—you will not want it to be a complex subtree
- How many left-deep plans are there for \(R_1 \bowtie R_2 \bowtie \cdots \bowtie R_n \)?
 - Significantly fewer, but still lots— \(n! \) (720 for \(n = 6 \))

A greedy algorithm
- \(S_1, \ldots, S_n \)
 - Say selections have been pushed down; i.e., \(S_i = \sigma_{p_i} R_i \)
- Start with the pair \(S_j, S_f \) with the smallest estimated size for \(S_j \bowtie S_f \)
- Repeat until no table is left:
 - Pick \(S_k \) from the remaining tables such that the join of \(S_k \) and the current result yields an intermediate result of the smallest size
 - Minimize expected size
 - Remaining tables to be joined
 - Pick most efficient join method
 - Complexity?
Query optimization in System R

- A.k.a. Selinger-style query optimization
 - The classic paper on query optimization (Selinger et al., SIGMOD 1979)
- Basic ideas
 - Left-deep trees only
 - Bottom-up generation of plans using dynamic programming
 - ”Interesting orders”

Bottom-up plan generation

- Observation 1: Once we have joined \(k \) tables together, the method of joining this result further with another table is independent of the previous join methods
- Observation 2: Any subplan of an optimal plan must also be optimal (otherwise we could replace the subplan to get a better overall plan)
 - Not exactly accurate (next slide)
- Bottom-up generation of optimal left-deep plans
 - Compute the optimal plans for joining \(k \) tables together
 - Suboptimal plans are pruned
 - From these plans, derive optimal plans for joining \(k + 1 \) tables

The need for “interesting order”

- Example: \(R(A, B) \bowtie S(A, C) \bowtie T(A, D) \)
- Best plan for \(R \bowtie S \): nested-loop join (beats sort-merge)
- Best overall plan: sort-merge join \(R \) and \(S \), and then sort-merge join with \(T \)
 - Subplan of the optimal plan is not optimal!
- Why?
 - The result of the sort-merge join of \(R \) and \(S \) is sorted on \(A \)
 - This is an interesting order that can be exploited by later processing (e.g., join, duplicate elimination, \textsc{group by}, \textsc{order by}, etc.).

Dealing with interesting orders

- When picking the best plan
 - Comparing their costs is not enough
 - Plans are not totally ordered by cost anymore
 - Comparing interesting orders is also needed
 - Plans are now partially ordered
 - Plan \(X \) is better than plan \(Y \) if
 - Cost of \(X \) is lower than \(Y \)
 - Interesting orders produced by \(X \) subsume those produced by \(Y \)
- Need to keep a set of optimal plans for joining every combination of \(k \) tables
 - At most one for each interesting order

System-R algorithm

- Pass 1: Find the best single-table plans
- Pass 2: Find the best two-table plans by considering each single-table plan (from Pass 1) as the outer input and every other table as the inner input
- Pass \(k \): Find the best \(k \)-table plans by considering each \((k-1)\)-table plan (from Pass \(k-1 \)) as the outer input and every other table as the inner input
- Heuristics
 - Push selections and projections down
 - Process cross products at the end

Reasoning about predicates

- \textsc{select} * \textsc{from} \(R \), \(S \), \(T \)
 \textsc{where} \(R.A = S.A \) \textsc{and} \(S.A = T.A \);
 - Looks like a cross product between \(R \) and \(T \)
 - No join condition
 - But there is really a join between \(R \) and \(T \)
 - \(R.A = T.A \) is implied from the other two predicates
 - A good optimizer should be able to detect this case and consider the possibility of joining \(R \) with \(T \) first
System-R algorithm example

- SELECT SID, CID
 FROM Student, Enroll, Course
 WHERE Student.age < 10
 AND Student.SID = Enroll.SID
 AND Enroll.CID = Course.CID
 AND Course.title LIKE '%data%';

- Primary keys/indexes
 - Student(SID), Enroll(CID, SID), Course(CID)

- Ordered, secondary indexes
 - Student(age), Course(title)

Example: pass 1

- Plans for {Student}
 - S1: Table scan, then filter (age < 10);
 cost 100; result ordered by SID; interesting order
 - S2: Index scan using condition (age < 10);
 cost 5; result ordered by age; not an interesting order

- Plans for {Enroll}
 - E1: Table scan;
 cost 1000; result ordered by CID, SID; interesting order

- Plans for {Course}
 - C1: Table scan, then filter title LIKE '%data%';
 cost 40; result ordered by CID; interesting order
 - C2: Index scan with filter (title LIKE '%data%');
 cost 60; result ordered by title; not an interesting order

Example: pass 2

- Plans for {Student, Enroll}
 - Extending best plans for {Student}
 - From S1 (table scan, then filter (age < 10))
 - Block-based nested loop join with Enroll; cost 1100
 - Sort Enroll by SID, and merge join; cost 3100; ordered by SID; no longer an interesting order
 - ...
 - From S2 (index scan using condition (age < 10))
 - Block-based nested loop join with Enroll; cost 1005
 - ...
 - Extending best plans for {Enroll} ...

Example: pass 2 continued

- Plans for {Student, Course}
 - Ignore; it is a cross product

- Plans for {Enroll, Course}
 - Extending best plans for {Course}
 - From C1 (table scan, then filter (title LIKE '%data%'))
 - Merge join; cost 1040
 - ...
 - Extending best plans for {Enroll} ...

Example: pass 3

- Finally, plans for {Student, Enroll, Course}
 - Extending best plans for {Student, Enroll}
 - (INDEX-SCAN(Student) NLJ Enroll) NLJ FILTER(Course);
 cost ...
 - ...
 - Extending best plans for {Student, Course}
 - None!
 - Extending best plans for {Enroll, Course}
 - (FILTER(Course) SMJ Enroll) NLJ (INDEX-SCAN(Student));
 cost ...
 - ...

Considering bushy plans

- Straightforward generalization:
 - Store all optimal 1-table, 2-table, ..., and k-table plans
 - To find the optimal plan for k + 1 tables
 - For every possible partition of these tables into two groups, find the best ways of joining the optimal plans for the two groups
 - Store the overall optimal plans
Optimizer “blow-up”

- A 20-way join will easily choke an optimizer using the System-R algorithm

Solutions
- Heuristics-based query optimization
- Randomized query optimization (Ioannidis & Kang, SIGMOD 1990)
- Genetic programming (PostgreSQL)

Search space revisited

Transformations
Relational algebra equivalences (or query rewrite rules in general):
- Join method choice: $R \bowtie_{\text{method}_1} S \to R \bowtie_{\text{method}_2} S$
- Join commutativity: $R \bowtie S \to S \bowtie R$
- Join associativity: $(R \bowtie S) \bowtie T \to R \bowtie (S \bowtie T)$
- Left join exchange: $(R \bowtie S) \bowtie T \to R \bowtie (S \bowtie T)$
- Right join exchange: $R \bowtie (S \bowtie T) \to S \bowtie (R \bowtie T)$

Why the last two redundant rules?
- “Shortcuts” to avoid using the join commutativity rule, which does not change the cost of certain joins (example?)—creating plateaus in the plan space

Iterative improvement

- Repeat until some stopping condition (e.g., time runs out):
 - Start with a random plan
 - Repeatedly go downhill (i.e., pick a neighbor with a lower cost randomly) to get to a local optimum
 - Return the smallest local optimum found

Simulated annealing

- Start with a plan and an initial temperature
- Repeat until temperature is 0:
 - Repeat until some equilibrium (e.g., a fixed number of iterations):
 - Move to a random neighbor of the plan (an uphill move is allowed with probability $e^{-\Delta \text{cost}/\text{temperature}}$)
 - Larger \to smaller probability
 - Lower temperature \to smaller probability
 - Reduce temperature
 - Return the plan visited with the lowest cost

Two-phase optimization

- Phase I: run iterative improvement for a while to find a good local optimum
- Phase II: run simulated annealing with a low initial temperature to get more improvements

Why does this heuristic tend to work better than both iterative improvement and simulated annealing?
Shape of the cost function

- An average local optimum has a much lower cost than an average plan.
- The average distance between a random state and a local optimum is long.
- There are lots of local optima.
- Many local optima are connected together through low-cost plans within short distances.

Comparison of randomized algorithms

- Iterative improvement
 - Too easily trapped in a local optimum
 - Too much work to restart
- Simulated annealing
 - Too much time spent on high-cost plans
- Two-phase
 - Phase I uses iterative improvement to get to the cup bottom quickly
 - Phase II uses simulated annealing to explore the cup bottom further.