Class Overview

CPS 1/296
Ron Parr

About The Instructor

- Ron Parr, Assistant Professor
 - parr@cse.duke.edu
 - D209 LSRC, 660-6537
 - Office Hours: W@10:00 – or just come by
- My 7th year at Duke
- Interests
 - Probabilistic Robotics
 - MDPs, Reinforcement learning
 - Perception

What is a 1/296 Class???

- X96 means that the class is “experimental”
 - Offered 0 or few times before
 - Course details still in flux
- 1296 means concurrent undergrad/grad
- Not necessarily more advanced than lower numbered classes
- Unofficial consequences:
 - Some h-cups
 - Often more lenient grading

What is Covered?

- We cover a wedge of robotics
 - Sensing
 - Tracking
 - Mapping
- We do not emphasize
 - Control
 - Mechanical issues

What are the prof’s goals?

- Develop a real (non x96) robotics class
- Promote interest in robotics & AI at Duke
- Teach students
 - How to read research papers in AI/Robotics
 - How to get a robot to do something cool
 - The big concepts behind it all:
 - Probability statistics
 - Linear algebra
 - Tracking and filtering
 - Graphical models
 - Color and perception

What do you need to know already?

- Would be nice if everybody knew C, linux, statistics, basic linear algebra, advanced algorithms, etc., but this isn’t realistic
- Need to know:
 - Programming
 - Basic matrix operations
 - Very basic probability
 - Basic analysis of algorithms
What will students do in this class?

- Complete coverage of robotic mapping from the photons hitting a sensor to the image file produced by the robot
- Sensors, lenses, color, image processing, tracking, mapping
- Accomplished through incremental projects
 - Image processing
 - Scene reconstruction using linear equations
 - Implementation of a Kalman filter
 - Implementation of a mapper

What about the presentation?

- Students will do an in-class presentation based upon a current research paper in robotic mapping
- Why?
 - Learning to read papers is an important skill
 - CS classes overuse textbooks, resulting in students who are ill prepared for research and ill prepared for the real world
 - Oral presentations are increasingly important in the real world, but are not emphasized adequately in education

How will the presentation work?

- I will provide a list of papers
- Two weeks before the presentation, students must turn in a draft set of powerpoint slides
- One week before the presentation, students must schedule a practice talk with me
- Presentations:
 - 30 minutes
 - Should be critical
- Remainder of class time used for discussion

So, where are the robots?

- Option 1: I purchase iRobot create packages
 - You provide laptop
 - Camera TDI
 - Pros: Mental robots, rugged yet disposable
 - Cons: Software glitches
- Option 2: Return our existing robots
 - Pros: Heavy-duty hardware, more stable software platform
 - Cons: Refurbishment required, downtime can be long, robot-sharing
- Option 3:
 - Virtual/synthetic robots
 - Option 3a: You are the robot
 - Option 3b: I provide sensor logs

Difference Between 196 & 296

- Undergrad requirements:
 - Implement basic mapper under assumption of distinctive landmarks
 - Present content of paper
- Graduate requirements
 - Implement basic mapper under assumption of distinctive landmarks, but finish earlier than undergrads
 - Present content of paper + “project” (= results of applying/extending the ideas in the paper)

Grading

- Grade is based on assignments
 - Programming
 - Demonstration of correctness
 - Some Derivations
- For undergrads: Presentation = 1 assignment
- For grads: Presentation/project = 2 assignments
- Undergrads can do project for extra credit
Collaboration Policy

- Discussion is *encouraged*

- System level code sharing allowed if cited
 - Low level routines for accessing files
 - Code for controlling devices
 - etc.

- Derivations must be written up independently

- All Robotics code must be written independently