Introduction to SLAM

Ron Parr
CPS 1/296

Mapping as Filtering

- Goals of Simultaneous Localization and Mapping
 - Constant time computation per sensor sweep
 - No accumulating error
- Insight: Track map+robot state together
 - SLAM problem is a big HMM/Kalman filter
 - Filtering equations give correct probability distribution over map and robot position, integrating all evidence up to current time step
- Proposed by Smith, Self and Cheeseman in 1990, but not immediately pursued

SLAM Pseudocode

- Project robot state distribution forward (robot motion model)
- Observe environment (laser scans)
- Update robot state by P(O|S)
- Update map (add new objects)
- Repeat

Kalman Filter SLAM Properties

- Assumes:
 - Linear motion model
 - Gaussian noise
- Produces
 - Robot position estimates
 - Landmark position estimates
 - Means and full covariance matrix
- (In most cases, must use EKF)

Problems with KF SLAM

- Reality is not linear Gaussian (partially addressed by EKF/UKF)
- Produces only a map of landmarks
- n landmarks: O(n^2) cost
- Data association problem

Video courtesy of Mark Paskin
FastSLAM (Montemerlo et al. 2002)

- View problem as a Bayes net (insight from Murphy)

- Rao Blackwellization for SLAM
 - Samples robot positions
 - KF for landmark positions
 - Benefits of sampling:
 - Fixes unrealistic linear-Gaussian assumption
 - Landmark positions become independent
 - Linear cost in no. of landmarks seen

Map Storage for FastSLAM

- Each map requires linear space in number of landmarks

- Expensive with larger numbers of particles and maps

- Solution: Use copy-on-write

Limitations of FastSLAM

- Doesn’t address data association problem

- Doesn’t address landmark sparseness issue

- Tends to require a lot of particles over long trajectories
 - See videos from Mark Paskin
 - Why? (discussion)