Regression

CPS 271
Ron Parr

Supervised Learning

- Given: Training Set
- Goal: Good performance on test set
- Assumptions:
 - Training samples are independently drawn, and identically distributed (IID)
 - Test set is from same distribution as training set

Regression Specifics

- Datum i has feature vector: $x^{(i)}$
- Has real valued target: $y^{(i)}$
- Space of concepts $H =$ linear combinations of feature vectors: $h(x) = \theta^T x$
- Learning objective: Search to find "best" θ
 - (This is standard "data fitting" that most people learn in some form or another.)

Linearity of Regression

- Regression typically considered a linear method, but...
 - Features not necessarily linear
 - and, BTW, features not necessarily linear

Regression Examples

- Predicting housing price from:
 - House size, lot size, rooms, neighborhood*, etc.
- Predicting weight from:
 - Sex, height, ethnicity, etc.
- Predicting life expectancy increase from:
 - Medication, disease state, etc.
- Predicting crop yield from:
 - Precipitation, fertilizer, temperature, etc.

What is "best"?

- No obvious answer to this question
- Three compatible answers:
 - Minimize squared error on training set
 - Maximize likelihood of the data (under certain assumptions)
 - Project data into "closest" approximation
- Other answers possible
Minimizing Squared Training Set Error

- Why is this good?
- How could this be bad?
- Minimize:
 \[J(\theta) = \sum_{i=1}^{n} (\theta \cdot x^{(i)} - y^{(i)})^2 \]

Maximizing Likelihood of Data

- Assume:
 - True model is in \(H \)
 - Data have Gaussian noise
- Actually might want:
 \[
 \arg \max_{\theta} P(H \mid X) = \frac{P(X \mid H)P(H)}{P(X)}
 \]
- Is maximizing \(P(X \mid H) \) a good surrogate? (maximizing over \(\theta \))

Maximizing \(P(X \mid H) \)

- Assume: \(y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)} \)
- Where: \(P(\epsilon^{(i)}) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{\epsilon^{(i)}^2}{2\sigma^2}\right) \)
 (Gaussian distribution w/ mean 0, standard deviation \(\sigma \))
- Therefore:
 \[
 P(y^{(i)} \mid x^{(i)}, \theta) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2}\right)
 \]

Maximization Continued

- Maximizing over entire data set:
 \[
 \prod_{i} P(y^{(i)} \mid x^{(i)}, \theta) = \prod_{i} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2}\right)
 \]
- Maximizing equivalent log formulation:
 (ignoring constants)
 \[
 \sum_{i} (y^{(i)} - \theta^T x^{(i)})^2
 \]
 or minimizing:
 \[
 \sum_{i} (y^{(i)} - \theta^T x^{(i)})^2
 \]
 Look familiar?

Checkpoint

- So far we have considered:
 - Minimizing squared error on training set
 - Maximizing Likelihood of training set
 (given model, and some assumptions)
- Different approaches w/same objective!

Design Matrix

- We call \(A \) the design matrix
- Columns of \(A \) are features
- Rows of \(A \) are data
- \(a_{ij} = \text{Feature } j \text{ of training instance } i \)
Geometric Interpretation

- \(Y = (Y^{(1)}, \ldots, Y^{(n)}) \) = point in \(n \)-space
- \(A \theta = H = \) column space of features
- \(A \theta = \) subspace of \(\mathbb{R}^n \) occupied by \(H \)
- Goal: Find "closest" point in \(H \) to \(Y \)
- Suppose closeness = Euclidean distance

Minimizing Euclidean Distance

- Minimize: \(\| Y - A \theta \|_2 \)
- For \(n \) data points:
 \[
 \sum_{i=1}^{N} (y^{(i)} - x^{(i)} \theta)^2
 \]
- Equivalent to minimizing:
 \[
 \sum_{i=1}^{N} (y^{(i)} - x^{(i)} \theta)^2
 \]

Another Geometric Interpretation

![Diagram](image)

Checkpoint

- Three different ways to pick \(H \)
 - Minimize squared error on training set
 - Maximize likelihood of training set
 - Distance minimizing projection into \(H \)
- All lead to same optimization problem!
 \[
 \arg\min_{\theta} J(\theta) = \sum_{i=1}^{N} (\theta \cdot x^{(i)} - y^{(i)})^2
 \]

Solving the Optimization Problem

- Nota bene: Good to keep optimization problem and optimization technique separate in your mind
- Some optimization approaches:
 - Gradient descent
 - Direct Minimization derived from
 - Calculus
 - Geometric constraints

Minimizing J by Gradient Descent

![Diagram](image)

(Adapted from Luke Golub's Slides)
Gradient Descent Issues

- For this particular problem:
 - Global minimum exists
 - Convergence guaranteed if done in "batch"
- In general:
 - Local optimum only
 - Batch mode more stable
 - Incremental possible
 - Can oscillate
 - Use decreasing step size (Rabin-Monro) to stabilize

Direct Solution

- Geometric Approach (Strang)
- Let \(A \) be the design matrix
- Require orthogonality:
 \[
 \forall z : (Az - Y) = 0
 \]
 Any vector in \(H \)
 Line from \(Y \) to solution
 \[
 \forall z : z^T [A^T A \theta - A^T Y] = 0
 \]

Direct Solution Continued

- When is this true: \(\forall z: z^T [A^T A \theta - A^T Y] = 0 \)
- When:
 \[
 A^T A \theta - A^T Y = 0
 \theta = (A^T A)^{-1} A^T Y
 \]

 When does the inverse exist?

 Columns of \(A \) must be independent.

What about other criteria?

- How about minimizing worse case loss?
 \[
 \min_{\theta} \max \left(\theta \cdot x^{(i)} - y^{(i)} \right)
 \]
- Solve by linear program…