What is robotics?

- Mechanical man ideas go back at least to the Greeks
- Term comes from Czech playwright Karel Capek (or perhaps from his brother Josef) ~1917-1921
 - “robota” (obligatory work)
 - “robotnik” (serf)
- “Robotics” first used by Asimov in 1950
- Agents with physical embodiment
 - Sensors
 - Effectors
- Human-shaped robots = humanoids

Common Robot Applications

- Industry and agriculture
 - Building cars
 - Harvesting crops
- Mapping and Exploration
 - Mines
 - Mars
- Transportation
 - Delivery of mail/equipment
 - Military applications
- Medical devices
- Household aids
- Entertainment
- Human augmentation

Areas of Robotics

- Industrial/Mechanical robotics
 - Fabrication and (low level) control of robotic devices
 - Usually part of engineering
- Algorithmic robotics
 - Control algorithms for abstracted robots
 - Part of computer science theory
- Intelligent Robotics
 - Higher level control of robotic devices
 - Part of AI
- Probabilistic Robotics
 - Intelligent Robotics using probabilistic techniques
 - Subfield of Intelligent Robotics
Robot Effector Types

- Many effector types simply move the robot
 - Wheels
 - Tracks
 - Legs
- Different effector types have different pros/cons
- Robot arms/hands
 - Usually not attached to mobile robots (some exceptions)
 - Used in factory automation

Robot Effector Complexity

- Degree of Freedom (DOF)
 - Independent direction of movement
 - Rigid body in space = 6DOF (X, Y, Z, yaw, roll, pitch)
- Dynamic state (DOF x2 for derivatives)
- Effective DOF can be > true DOF
 - e.g. car (2 actual, 3 effective)
 - effective > true = nonholonomic

Types of Robot Sensors

- Cameras
- Laser/Sonar/IR range finders
- Microphones
- Odometers
- Inertial sensors
- GPS
- Force/Torque/touch sensors

Perception

- Perception is often a probabilistic inference problem
- Want P(S|O) (state given observations)
- Model P(O|S) (sensor model)
- Use Bayes rule