Announcements (Jan. 25)

- Sign up for the first round of presentations
 - Please reply by Sunday
 - First one on sensor network applications on Feb. 20
- Course project handout distributed today
 - Milestone 1: form teams and schedule an appointment with me by March 1 (the earlier the better)
- Readings for next Tuesday: Monitoring of Extreme Values by Silberstein et al. and Contour Map by Xue et al.
 - One review due (you choose which)

Computing aggregates

- SQL aggregates: MIN, MAX, SUM, COUNT, AVG
- More complex: COUNT(DISTINCT ...), median/quantiles, wavelets, samples, ...
- An aggregate function can be implemented with three functions:
 - Generate, $G(x)$: produce a partial state record from input
 - Fuse, $F(r_1, r_2)$: merge two records into one
 - Evaluate, $E(r)$: evaluate result from a partial state record
- E.g., for AVG:
 - $G(x) = \frac{x}{1}$
 - $F\left(\frac{x}{1}, \frac{y}{w}\right) = \frac{x+y}{w+x}$
 - $E\left(\frac{x}{1}\right) = \frac{x}{w}$

Making a tree more robust

- Tree is pretty fragile
 - If one link fails, data from entire subtree is lost
- Turn tree into a DAG?
 - Send $1/k$ of the summary to k parents, for free (broadcast)
 - One link failure only drops $1/k$ data
Aggregation + routing spaghetti

- Variation of the DAG idea: send the whole summary up to k parents?
 - Works for some aggregates (which?)
 - But in general, one item can be counted many times!
- Aggregation scheme is too dependent on routing!
 - Routing tweaks affect correctness of aggregation
 - Can we decouple them?

Order and duplicate insensitivity (ODI)

- Won’t it be nice if aggregation scheme is insensitive to the sequence or duplication of inputs?
 - More precisely, a scheme is ODI-correct if, for any DAG, it produces a result identical to the correct answer produced by a canonical tree
 - This is the property that made MIN/MAX easy

Testing ODI-correctness

- Necessary and sufficient test turns out to be really simple
 - $G(.)$ preserves duplicates; i.e., if x_1 and x_2 are considered duplicates, then $G(x_1) = G(x_2)$
 - $F(.,.)$ is commutative
 - $F(.,.)$ is associative
 - $F(.,.)$ is same-input idempotent; i.e., $F(r, r) = r$

 - Do MIN/MAX work?
 - Does COUNT work out-of-box?

How to design ODI-correct schemes?

- Let’s do COUNT as an example
 - A little randomness/approximation goes a long way
 - Use synopses—compact, approximate summaries of data—for partial state records
 - Borrow the “almighty” FM-sketch
 - Then turn COUNT into MAX, which is ODI-correct

FM-sketch

- Flajolet and Martin, 1985
- Counts # of distinct elements in a multi-set in one pass
 - Powerful building block for many data stream algorithms
- Start with a bitmap of 0’s
- For each element x in the multi-set, hash it to a positive integer using function $h(x)$
- Turn the $h(x)$-th bit on
 - # of distinct elements $\approx 2^{(\text{position of first 0} - 1) / 0.77351}$
 - Use multiple independent h’s to improve accuracy
 - With enough number of h’s, can get within a prescribed error with probability higher than a prescribed threshold

FM-sketch (cont’d)

- For FM-sketch to work, need
 - $Pr[h(x) = 1] = 1/2$, $Pr[h(x) = 2] = 1/4$, $Pr[h(x) = 3] = 1/8$, …
 - Easy to simulate with a random binary hash $g(x,i)$
- Intuition: the i-th bit will be 1 if there are many more than 2^i distinct elements, each trying to set the bit with probability 1/2

Safely 1’s for positions $< \log m$
Safely 0’s for positions $\geq \log m$

Expected position of the first 0 roughly estimates $\log m$
3

Back to COUNT...

- Suppose each node has a unique id
- Partial state record: FM sketch with $> \log n$ bits
- $G(id)$: generate FM-sketch with $\{id\}$
- $F(s_1, s_2)$: bitwise-OR the two input sketches
 - OR is like MAX
- $E(s)$: estimate using the position of first 0 in s

- How about SUM?
 - Convert to COUNT: for node id with integer value v, generate v items $(id, 1), (id, 2), \ldots, (id, v)$

Rings

- Now we can use much more flexible routing structures to help improve communication reliability without double-counting

Snooping tricks

- Implicit acknowledgement
 - Explicit ack too expensive for sensor networks
 - Node u sending to v snoops subsequent transmissions from v to see if v indeed forwards the message for u
 - Why doesn't this trick work for TAG SUM?
 - How does it work with synopsis?
- Suppression
 - If my neighbor's transmission subsumes mine, no need to transmit mine
 - Used in TAG
 - $Would$ this trick work in synopsis diffusion?

Another example: uniform sample

- Suppose each node has a unique id
- $G(id, v) = \{(id, v, r)\}; r$ is randomly chosen from $[0, 1]$
- Partial state record: a set of no more than K entries of the form (id, v, r)
- $F(s_1, s_2)$: up to K distinct entries in $s_1 \cup s_2$ with largest r
 - Again, top-K is a simple extension of MAX
- $E(s)$: output all (id, v) entries
 - A random sample because r's are randomly generated

Sensor aggregation problem: solved?

- How large are synopses?
- What are the costs of complex local processing?
- Is snooping completely free?
- MAX is not robust against outliers
 - What if somebody injects an all-1 FM-sketch?
- Everybody still transmits!
 - Can we do better?
- Are we taking advantage of spatio-temporal correlations?
- Can suppression and redundancy really mix?