ComSci 6
Programming Design and Analysis

February 4, 2010
Prof. Rodger and Prof. Forbes
Announcements

• Reading for next time
 – Chap. 4.6, Chap 7.5, Chap 11.1
 – Reading Quiz due before next class
• Assignment 3 due tonight!
• Assignment 4 out.
Estimation

• Square Root:
 – Given a real number c and some error tolerance ϵ
 – Estimate t, the square root of c

• Pi:
 – Estimate π with a given number of Monte Carlo trials
While Loops: Square Root

• Q. How might we implement `Math.sqrt()`?

• A. To compute the square root of `c`:
 – Initialize `t_0 = c`.
 – Repeat until `t_i = c / t_i`, up to desired precision:
 set `t_{i+1}` to be the average of `t_i` and `c / t_i`.

<table>
<thead>
<tr>
<th><code>t_i</code></th>
<th>=</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>t_0</code></td>
<td>2.0</td>
</tr>
<tr>
<td><code>t_1</code></td>
<td>1.5</td>
</tr>
<tr>
<td><code>t_2</code></td>
<td>1.416666666666665</td>
</tr>
<tr>
<td><code>t_3</code></td>
<td>1.4142156862745097</td>
</tr>
<tr>
<td><code>t_4</code></td>
<td>1.4142135623746899</td>
</tr>
<tr>
<td><code>t_5</code></td>
<td>1.414213562373095</td>
</tr>
</tbody>
</table>

computing the square root of 2

© Sedgewick & Wayne
Newton-Raphson Method

- Square root method explained. \(f(x) = x^2 - c \) to compute \(\sqrt{c} \)
 - Goal: find root of function \(f(x) \).
 - Start with estimate \(t_0 = c \).
 - Draw line tangent to curve at \(x = t_i \).
 - Set \(t_{i+1} \) to be x-coordinate where line hits x-axis.
 - Repeat until desired precision.
Buffon Needle Experiment

Figure 3 The Buffon Needle Experiment
Needle Position

- Needle length = 1, distance between lines = 2
- Generate random y_{low} between 0 and 2
- Generate random angle α between 0 and 180 degrees
- $y_{high} = y_{low} + \sin(\alpha)$
- Hit if $y_{high} \geq 2$

Figure 4
When Does the Needle Fall on a Line?
Constructing objects/Applying methods

- Class Rectangle in Chapter 2
- Creating a Rectangle object with x, y, width, and height

  ```java
  Rectangle box = new Rectangle(5, 10, 20, 30);
  ```
- Applying Methods

  ```java
  box.translate(15, 25);       // move the rectangle
  System.out.println("x: ", box.getX());   // print x
  System.out.println("y: ", box.getY());   // print y
  ```
Parts of a Class

• State
 – Data
• Constructors
 – Initialize state when object is created
• Accessor methods
 – Accessing data
• Mutator methods
 – Modify data – change the state
Class Example

• Needle class – Needle.java
 – Defines state and behavior of Needle
 – Keeps track of the number of times needle hits the line
 – Use drop() method to simulate dropping needle

• java.util.Random class in Java library
 – nextDouble() generates pseudo-random numbers in [0,1]
import java.util.Random;

/**
 * This class simulates a needle in the Buffon needle experiment.
 */
public class Needle {
 /**
 * Constructs a needle.
 */
 public Needle() {
 hits = 0;
 tries = 0;
 generator = new Random();
 }

 /**
 * Drops the needle on the grid of lines and remembers whether the needle hit a line.
 */
 Continued
22: public void drop()
23: {
24: double ylow = 2 * generator.nextDouble();
25: double angle = 180 * generator.nextDouble();
26: // Computes high point of needle
27: double yhigh = ylow + Math.sin(Math.toRadians(angle));
28: if (yhigh >= 2) myHits++;
29: tries++;
30: }
31:
32: /**
33: * Gets the number of times the needle hit a line.
34: * @return the hit count
35: */
36: public int getHits()
37: {
38: return myHits;
39: }
40:
41: Continued

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved
/**
 * Gets the total number of times the needle was dropped.
 * @return the try count
 */

public int getTries()
{
 return myTries;
}

private Random myGenerator;
private int myHits;
private int myTries;

Intended Output:

Tries = 10000, Tries / Hits = 3.08928
Tries = 1000000, Tries / Hits = 3.14204
Classwork Today – Loops/Classes

- Snarf the *classwork* project
- Complete Sqrt
 - Finish *estimate* method
 - Print results
- Complete Needle
 - Finish *main* method
 - Print results
- Classwork handout has all the details
- Submit under assignment name *Class07-Feb04*