Experimenting with Grammars to Generate L-Systems – in JFLAP
April 1, 2010

Prof. Susan Rodger
Computer Science Dept
L-Systems

• Grammatical systems introduced by Lyndenmayer
• Model biological systems and create fractals
• Similar to Chomsky grammars, except all variables are replaced in each step, not just one!
• Successive strings are interpreted as strings of render commands and displayed graphically
Parts of an L-System
(a type of grammar)

• Defined over an alphabet

• Three parts
 – Axiom (starting place)
 – Replacement rules (replaces all variables at once)
 – Geometric rules (for drawing)
 • g means move forward one unit with pen down
 • f means move forward one unit with pen up
 • + means turn right by the default angle
 • - means turn left by the default angle
L-System

An L-system is composed of three parts \((\Sigma, h, w)\)

- \(\Sigma\): finite alphabet, set of symbols
- \(h\): rewriting rules, each symbol is replaced by a string of symbols
- \(w\): axiom, starting point

\(h\) is finite substitutions, \(h: \Sigma \rightarrow \Sigma^*\).
$h(w)$

$h(w)$ is computed by replacing every symbol in w that has a rewrite rule by that rule.

A language L of an L-system is the word sequence generated by

- $h^0(w) = w$
- $h^1(w) = h(w)$
- $h^2(w) = h(h(w))$
- \ldots

$L = \{ h^i(w) | \ i \geq 0 \}$
NOTE: If $h(a) = bb$ we will write this as a rule

$$a \rightarrow bb$$
Example:

\[\Sigma \text{ alphabet: } \{a, b\} \]

h rules: \[a \rightarrow aa \]
\[b \rightarrow ab \]

w axiom: \[ab \]

What is the language \(L \) of strings represented by this \(L \)-system?

\[L = \]
Drawing a picture of an L-system
Defining an L-system: (3 parts in this order)

- Axiom definition: This must be the first line of the file
- Production rules: Defines the replacement rules.
- Geometric rules: Defines colors, widths, etc.
Graphically represent

Symbols for drawing and moving:

- g: draw a line one step in the current direction
- f: move forward one step in the current direction
Example

axiom X

X -> g f g X

distance 15
lineWidth 5
color black

L =
What does this draw?
Geometric rules

- + change direction to the right
- - change direction to the left
- % change direction 180 degrees
- ~ decrement the width of the next lines
- [save in stack current state info
-] recover from stack state info
- { start filled in polygon
- } end filled in polygon
Example – lsys-samp1

- **Axiom**

- **Replacement Rules**

- **Geometric Rules**

NOTE: Must use spaces as separator between symbols
Example – lsys-samp1 (cont)

- Derivation of strings

\[X \]

\[gggX+Y \]

\[gggggggX + Y + g \]

\[gggggggggX+Y+g+g+g \]

Note: replace both \(X \) and \(Y \) each time
Example – lsys-samp2
Example – lsys-samp2 (cont)

\[g[\sim+Yg]gX \]

\[g[\sim+++Yg]gg[\sim+Yg]gX \]

\[g[\sim++++Yg]gg[\sim+++Yg]gg[\sim+Yg]gX \]

...
Example - tree
Example – tree rendered
Stochastic Tree

- Add a rule T -> T
- Now there is a choice for T, draw a line or don’t
Same Stochastic L-System

- Rendered 3 times, each at 8th derivation
JFLAP

- JFLAP is available for free:
 www.jflap.org
- Duke School of Environment uses L-systems to model pine needles in Duke Forest
Classwork 5 - Exercise 1

- Write an L-system for the picture below.
- Symbols needed are: g, + and one variable
- Distance of the line is 100, rendering at 1 draws the first line, each additional render draws another line.
Exercise 2

- Write an L-system for the picture below.
- Symbols may need: g, %, +
- Distance set to 15, angle set to 45, side of square is length 30, first diagonal line is 60
- 1st, 2nd and 6th renderings shown
Exercise 3

• Write an L-system for the picture below.
• Symbols may need: g, +, -, []
• Angle set to 90, distance set to 15
• Shows 1st, 2nd and 3rd renderings