The problem below is to be done in groups of 2-3 students. The work is to be written up and turned in with all student names from the group on it.

1. (10 pts) Let’s consider adding a Queue to our definition of a finite automaton.

 (a) (2 pts) A DFA is defined as a 5-tuple. Define a Queue Automaton formally as an n-tuple, n=? Be sure to state what all the parts are and give a formal definition of δ.

 (b) (3 pts) Write in sentences a description of an algorithm for recognizing the language \(\{a^nb^n c^n \mid n > 0\}\) using the Queue Automaton.

 (c) (1 pts) Explain why adding a queue to a DFA is more powerful than adding a stack.

 (d) (4 pts) Prove that the Queue Automaton is equivalent to a standard Turing machine. (You must show two parts. Show that any Queue Automaton can be converted to a standard Turing machine, and that any standard Turing machine can be converted to a Queue Automaton.)