Methods for Transforming Grammars

We will consider CFL without \(\lambda \). It would be easy to add \(\lambda \) to any grammar by adding a new start symbol \(S_0 \),

\[
S_0 \rightarrow S \mid \lambda
\]
Theorem (Substitution) Let G be a CFG. Suppose G contains

\[A \rightarrow x_1Bx_2 \]

where A and B are different variables, and B has the productions

\[B \rightarrow y_1 | y_2 | \ldots | y_n \]

Then can construct G’ from G by deleting

\[A \rightarrow x_1Bx_2 \]

from P and adding to it

\[A \rightarrow x_1y_1x_2 | x_1y_2x_2 | \ldots | x_1y_nx_2 \]

Then, \(L(G) = L(G') \).
Example:

\[S \rightarrow aB_a \] becomes
\[B \rightarrow aS \mid a \]

Definition: A production of the form
\[A \rightarrow Ax, \ A \in V, \ x \in (V \cup T)^* \] is left recursive.
Example: Previous expression grammar was left recursive.

\[
\begin{align*}
E & \rightarrow E + T \mid T \\
T & \rightarrow T \ast F \mid F \\
F & \rightarrow I \mid (E) \\
I & \rightarrow a \mid b
\end{align*}
\]

Derivation of a + b + a + a is:

\[
\begin{align*}
E & \Rightarrow E + T \Rightarrow E + T + T \Rightarrow E + T + T + T \\
& \Rightarrow^* a + T + T + T
\end{align*}
\]
Theorem (Removing Left recursion)
Let \(G = (V, T, S, P) \) be a CFG. Divide productions for variable \(A \) into left-recursive and non left-recursive productions:

\[
\begin{align*}
A & \rightarrow A.x_1 \mid A.x_2 \mid \ldots \mid A.x_n \\
A & \rightarrow y_1 | y_2 | \ldots | y_m
\end{align*}
\]

where \(x_i, y_i \) are in \((V \cup T)^*\).

Then \(G' = (V \cup \{Z\}, T, S, P') \) and \(P' \) replaces rules of form above by

\[
\begin{align*}
A & \rightarrow y_i | y_i Z, \ i = 1, 2, \ldots, m \\
Z & \rightarrow x_i | x_i Z, \ i = 1, 2, \ldots, n
\end{align*}
\]
Example:
\[E \rightarrow E + T | T \quad \text{becomes} \]
\[T \rightarrow T \ast F | F \quad \text{becomes} \]

Now, Derivation of \(a+b+a+a\) is:
Useless productions

S → aB | bA
A → aA
B → Sa
C → cBc | a

What can you say about this grammar?

Theorem (useless productions) Let G be a CFG. Then ∃ G’ that does not contain any useless variables or productions s.t. L(G)=L(G’).
To Remove Useless Productions:
Let $G=(V,T,S,P)$.

I. Compute $V_1 = \{\text{Variables that can derive strings of terminals}\}$

1. $V_1 = \emptyset$

2. Repeat until no more variables added
 - For every $A \in V$ with $A \rightarrow x_1 x_2 \ldots x_n$, $x_i \in (T^* \cup V_1)$, add A to V_1

3. $P_1 = \text{all productions in } P \text{ with symbols in } (V_1 \cup T)^*$

Then $G_1 = (V_1,T,S,P_1)$ has no variables that can’t derive strings.
II. Draw Variable Dependency Graph

For $A \rightarrow xBy$, draw $A \rightarrow B$.

Remove productions for V if there is no path from S to V in the dependency graph. Resulting Grammar G' is s.t. $L(G)=L(G')$ and G' has no useless productions.
Example:

\[S \rightarrow aB \mid bA \]
\[A \rightarrow aA \]
\[B \rightarrow Sa \mid b \]
\[C \rightarrow cBc \mid a \]
\[D \rightarrow bCb \]
\[E \rightarrow Aa \mid b \]
Theorem (remove λ productions) Let G be a CFG with λ not in $L(G)$. Then \exists a CFG G' having no λ-productions s.t. $L(G) = L(G')$.

To Remove λ-productions

1. Let $V_n = \{ A \mid \exists$ production $A \rightarrow \lambda \}$

2. Repeat until no more additions

 • if $B \rightarrow A_1A_2\ldots A_m$ and $A_i \in V_n$ for all i, then put B in V_n

3. Construct G' with productions P' s.t.

 • If $A \rightarrow x_1x_2\ldots x_m \in P$, $m \geq 1$, then put all productions formed when x_j is replaced by λ (for all $x_j \in V_n$) s.t. $|\text{rhs}| \geq 1$ into P'.

Example:

\[
S \rightarrow Ab
\]
\[
A \rightarrow BCB \mid Aa
\]
\[
B \rightarrow b \mid \lambda
\]
\[
C \rightarrow cC \mid \lambda
\]
Definition Unit Production

\[A \rightarrow B \]

where \(A, B \in V \).

Consider removing unit productions:

Suppose we have

\[A \rightarrow B \]
\[B \rightarrow a \mid ab \]

But what if we have

\[A \rightarrow B \]
\[B \rightarrow C \]
\[C \rightarrow A \]
Theorem (Remove unit productions)
Let \(G=(V,T,S,P) \) be a CFG without \(\lambda \)-productions. Then \(\exists \) CFG \(G’=(V’,T’,S,P’) \) that does not have any unit-productions and \(L(G)=L(G’) \).

To Remove Unit Productions:

1. Find for each \(A \), all \(B \) s.t. \(A \Rightarrow B \) (Draw a dependency graph)
2. Construct \(G’=(V’,T’,S,P’) \) by
 (a) Put all non-unit productions in \(P’ \)
 (b) For all \(A \Rightarrow B \) s.t. \(B \rightarrow y_1|y_2|\ldots y_n \in P’ \), put \(A \rightarrow y_1|y_2|\ldots y_n \in P’ \)
Example:

\[S \rightarrow AB \]
\[A \rightarrow B \]
\[B \rightarrow C \mid Bb \]
\[C \rightarrow A \mid c \mid Da \]
\[D \rightarrow A \]
Theorem Let L be a CFL that does not contain λ. Then \exists a CFG for L that does not have any useless productions, λ-productions, or unit-productions.

Proof

1. Remove λ-productions
2. Remove unit-productions
3. Remove useless productions

Note order is very important. Removing λ-productions can create unit-productions! QED.
Definition: A CFG is in Chomsky Normal Form (CNF) if all productions are of the form

\[A \rightarrow BC \quad \text{or} \quad A \rightarrow a \]

where \(A, B, C \in V \) and \(a \in T \).

Theorem: Any CFG \(G \) with \(\lambda \) not in \(L(G) \) has an equivalent grammar in CNF.

Proof:

1. Remove \(\lambda \)-productions, unit productions, and useless productions.

2. For every rhs of length > 1, replace each terminal \(x_i \) by a new variable \(C_j \) and add the production \(C_j \rightarrow x_i \).

3. Replace every rhs of length > 2 by a series of productions, each with rhs of length 2. QED.
Example:

\[
S \rightarrow CBcd \\
B \rightarrow b \\
C \rightarrow Cc \mid e
\]
Definition: A CFG is in Greibach normal form (GNF) if all productions have the form

$$A \rightarrow ax$$

where $$a \in T$$ and $$x \in V^*$$

Theorem For every CFG G with $$\lambda$$ not in $$L(G)$$, $$\exists$$ a grammar in GNF.

Proof:

1. Rewrite grammar in CNF.
2. Relabel Variables $$A_1, A_2, \ldots A_n$$
3. Eliminate left recursion and use substitution to get all productions into the form:

\[A_i \rightarrow A_j x_j, \ j > i \]
\[Z_i \rightarrow A_j x_j, \ j \leq n \]
\[A_i \rightarrow ax_i \]

where \(a \in T, \ x_i \in V^*, \) and \(Z_i \) are new variables introduced for left recursion.

4. All productions with \(A_n \) are in the correct form, \(A_n \rightarrow ax_n. \) Use these productions as substitutions to get \(A_{n-1} \) productions in the correct form. Repeat with \(A_{n-2}, A_{n-3}, \) etc until all productions are in the correct form.