Section: Parsing

Parsing: Deciding if $x \in \Sigma^*$ is in $L(G)$ for some CFG G.

Consider the CFG G:

\[
\begin{align*}
S & \rightarrow Aa \\
A & \rightarrow AA \mid ABa \mid \lambda \\
B & \rightarrow BBa \mid b \mid \lambda
\end{align*}
\]

Is ba in $L(G)$? Running time?

New grammar G' is:

\[
\begin{align*}
S & \rightarrow Aa \mid a \\
A & \rightarrow AA \mid ABa \mid Aa \mid Ba \mid a \\
B & \rightarrow BBa \mid Ba \mid a \mid b
\end{align*}
\]

Is ba in $L(G)$? Running time?
Top-down Parser:

- Start with S and try to derive the string.

\[S \to aS \mid b \]

- Examples: LL Parser, Recursive Descent
Bottom-up Parser:

- Start with string, work backwards, and try to derive S.

- Examples: Shift-reduce, Operator-Precedence, LR Parser
The function \text{FIRST}:

\[G = (V, T, S, P) \]
\[\forall w, v \in (V \cup T)^* \]
\[a \in T \]
\[X, A, B \in V \]
\[X_I \in (V \cup T)^+ \]

\text{Definition:} \text{FIRST}(w) = \text{the set of terminals that begin strings derived from } w.

\[\text{If } w \Rightarrow^* av \text{ then} \]
\[a \text{ is in FIRST}(w) \]
\[\text{If } w \Rightarrow^* \lambda \text{ then} \]
\[\lambda \text{ is in FIRST}(w) \]
To compute FIRST:

1. $\text{FIRST}(a) = \{a\}$

2. $\text{FIRST}(X)$

 (a) If $X \rightarrow aw$ then
 a is in $\text{FIRST}(X)$

 (b) IF $X \rightarrow \lambda$ then
 λ is in $\text{FIRST}(X)$

 (c) If $X \rightarrow Aw$ and $\lambda \in \text{FIRST}(A)$
 then
 Everything in $\text{FIRST}(w)$ is in $\text{FIRST}(X)$
3. In general, \(\text{FIRST}(X_1X_2X_3..X_K) = \)

- \(\text{FIRST}(X_1) \)
- \(\bigcup \text{FIRST}(X_2) \) if \(\lambda \) is in \(\text{FIRST}(X_1) \)
- \(\bigcup \text{FIRST}(X_3) \) if \(\lambda \) is in \(\text{FIRST}(X_1) \)
 and \(\lambda \) is in \(\text{FIRST}(X_2) \)
 ...
- \(\bigcup \text{FIRST}(X_K) \) if \(\lambda \) is in \(\text{FIRST}(X_1) \)
 and \(\lambda \) is in \(\text{FIRST}(X_2) \)
 ...
 and \(\lambda \) is in \(\text{FIRST}(X_{K-1}) \)
- \(- \{\lambda\} \) if \(\lambda \notin \text{FIRST}(X_J) \) for all \(J \)
Example:

\[S \rightarrow aSc \mid B \]
\[B \rightarrow b \mid \lambda \]

FIRST(B) =
FIRST(S) =
FIRST(Sc) =
Example

\[S \rightarrow BCD \mid aD \]
\[A \rightarrow CEB \mid aA \]
\[B \rightarrow b \mid \lambda \]
\[C \rightarrow dB \mid \lambda \]
\[D \rightarrow cA \mid \lambda \]
\[E \rightarrow e \mid fE \]

FIRST(S) =
FIRST(A) =
FIRST(B) =
FIRST(C) =
FIRST(D) =
FIRST(E) =
Definition: \(\text{FOLLOW}(X) = \) set of terminals that can appear to the right of \(X \) in some derivation.

If \(S \xrightarrow{*} wAav \) then
 \(a \) is in \(\text{FOLLOW}(A) \)

To compute \(\text{FOLLOW} \):

1. \(\$ \) is in \(\text{FOLLOW}(S) \)
2. If \(A \rightarrow wBv \) and \(v \neq \lambda \) then
 \(\text{FIRST}(v) - \{\lambda\} \) is in \(\text{FOLLOW}(B) \)
3. IF \(A \rightarrow wB \) OR
 \(A \rightarrow wBv \) and \(\lambda \) is in \(\text{FIRST}(v) \)
 then
 \(\text{FOLLOW}(A) \) is in \(\text{FOLLOW}(B) \)
4. \(\lambda \) is never in \(\text{FOLLOW} \)
Example:

\begin{align*}
S & \rightarrow aSc \mid B \\
B & \rightarrow b \mid \lambda
\end{align*}

\text{FOLLOW}(S) = \\
\text{FOLLOW}(B) =
Example:

\[
\begin{align*}
S & \rightarrow \text{BCD} \mid \text{aD} \\
A & \rightarrow \text{CEB} \mid \text{aA} \\
B & \rightarrow \text{b} \mid \lambda \\
C & \rightarrow \text{dB} \mid \lambda \\
D & \rightarrow \text{cA} \mid \lambda \\
E & \rightarrow \text{e} \mid \text{fE}
\end{align*}
\]

\[
\begin{align*}
\text{FOLLOW}(S) & = \\
\text{FOLLOW}(A) & = \\
\text{FOLLOW}(B) & = \\
\text{FOLLOW}(C) & = \\
\text{FOLLOW}(D) & = \\
\text{FOLLOW}(E) & =
\end{align*}
\]