Deterministic Finite Accepter (or Automata)

A DFA = (Q, Σ, δ, q₀, F)

where

Q is finite set of states
Σ is tape (input) alphabet
q₀ is initial state
F ⊆ Q is set of final states.
δ: Q × Σ → Q

Example: Create a DFA that accepts even binary numbers.

Transition Diagram:

M = (Q, Σ, δ, q₀, F) =

Tabular Format

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q₀</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q₁</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example of a move: δ(q₀, 1) =
Algorithm for DFA:

Start in start state with input on tape
q = current state
s = current symbol on tape
while (s != blank) do
 q = δ(q,s)
 s = next symbol to the right on tape
if q∈F then accept

Example of a trace: 11010

Pictorial Example of a trace for 100:

1) \[
\begin{array}{c}
1 & 0 & 0 \\
\hline \\
q_0 & q_1
\end{array}
\]
2) \[
\begin{array}{c}
1 & 0 & 0 \\
\hline \\
q_0 & q_1
\end{array}
\]
3) \[
\begin{array}{c}
1 & 0 & 0 \\
\hline \\
q_0 & q_1
\end{array}
\]
4) \[
\begin{array}{c}
1 & 0 & 0 \\
\hline \\
q_0 & q_1
\end{array}
\]

Definition:

\[\delta^*(q,\lambda) = q\]
\[\delta^*(q,wa) = \delta(\delta^*(q,w),a)\]

Definition The language accepted by a DFA \(M=(Q,\Sigma,\delta,q_0,F)\) is set of all strings on \(\Sigma\) accepted by \(M\). Formally,
\[L(M) = \{w \in \Sigma^* \mid \delta^*(q_0, w) \in F\}\]
Trap State

Example: \(L(M) = \{b^n a \mid n > 0\} \)

Example: Create a DFA that accepts even binary numbers that have an even number of 1’s.

Example:

\[L = \{ w \in \Sigma^* \mid w \text{ has an even number of } a\text{'s and an even number of } b\text{'s} \} \]

Definition A language is regular iff there exists DFA \(M \) s.t. \(L = L(M) \).
Chapter 2.2

Nondeterministic Finite Automata (or Accepter)

Definition

An NFA = (Q, Σ, δ, q₀, F)

where

Q is finite set of states
Σ is tape (input) alphabet
q₀ is initial state
F ⊆ Q is set of final states.
δ: Q × (Σ ∪ {λ}) → 2^Q

Example

Note: In this example δ(q₀, a) =

L =

Example

L = {a^n b | n > 0} ∪ {a^n | n > 0}

Definition

qⱼ ∈ δ*(qᵢ, w) if and only if there is a walk from qᵢ to qⱼ labeled w.

Example

From previous example:

δ*(q₀, ab) =

δ*(q₀, aba) =

Definition: For an NFA M, L(M) = \{ w ∈ Σ* | δ*(q₀, w) ∩ F ≠ ∅ \}

The language accepted by nfa M is all strings w such that there exists a walk labeled w from the start state to final state.
2.3 NFA vs. DFA: Which is more powerful?

Example:

Theorem Given an NFA $M_N=(Q_N, \Sigma, \delta_N, q_0, F_N)$, then there exists a DFA $M_D=(Q_D, \Sigma, \delta_D, q_0, F_D)$ such that $L(M_N) = L(M_D)$.

Proof:

We need to define M_D based on M_N.

$Q_D =$

$F_D =$

$\delta_D :$

Algorithm to construct M_D

1. start state is $\{q_0\} \cup \text{closure}(q_0)$

2. While can add an edge

 (a) Choose a state $A=\{q_i, q_j, ... q_k\}$ with missing edge for $a \in \Sigma$
 (b) Compute $B = \delta^* (q_i, a) \cup \delta^* (q_j, a) \cup ... \cup \delta^* (q_k, a)$
 (c) Add state B if it doesn’t exist
 (d) add edge from A to B with label a

3. Identify final states

4. if $\lambda \in L(M_N)$ then make the start state final.
Minimizing Number of states in DFA

Why?

Algorithm

• Identify states that are indistinguishable
 These states form a new state

Definition Two states p and q are indistinguishable if for all \(w \in \Sigma^* \)

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \in F
\]
\[
\delta^*(p, w) \notin F \Rightarrow \delta^*(q, w) \notin F
\]

Definition Two states p and q are distinguishable if \(\exists \ w \in \Sigma^* \) s.t.

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \notin F \text{ OR}
\]
\[
\delta^*(q, w) \notin F \Rightarrow \delta^*(p, w) \in F
\]
Example:
Example:
Properties and Proving - Problem 1

Consider the property Replace_one_a_with_b or R1awb for short. If L is a regular, prove R1awb(L) is regular.

The property R1awb applied to a language L replaces one a in each string with a b. If a string does not have an a, then the string is not in R1awb(L).
Properties and Proving - Problem 2

Consider the property Truncate_all_preceeding_b’s or TruncPreb for short. If \(L \) is a regular, prove \(\text{TruncPreb}(L) \) is regular.

The property TruncPreb applied to a language \(L \) removes all preceding b’s in each string. If a string does not have a preceding b, then the string is the same in TruncPreb(L).